mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
## Job Test running on most CI jobs. ## Test binary * `test_main.cpp`: entry for gtest * `test_operator_registration.cpp`: test cases for gtest ## Helper sources * `operator_registry.h/cpp`: simple operator registry for testing purpose. * `Evalue.h`: a boxed data type that wraps ATen types, for testing purpose. * `selected_operators.yaml`: operators Executorch care about so far, we should cover all of them. ## Templates * `NativeFunctions.h`: for generating headers for native functions. (not compiled in the test, since we will be using `libtorch`) * `RegisterCodegenUnboxedKernels.cpp`: for registering boxed operators. * `Functions.h`: for declaring operator C++ APIs. Generated `Functions.h` merely wraps `ATen/Functions.h`. ## Build files * `CMakeLists.txt`: generate code to register ops. * `build.sh`: driver file, to be called by CI job. Pull Request resolved: https://github.com/pytorch/pytorch/pull/89596 Approved by: https://github.com/ezyang
29 lines
821 B
C++
29 lines
821 B
C++
#include "operator_registry.h"
|
|
#include <gtest/gtest.h>
|
|
|
|
namespace torch {
|
|
namespace executor {
|
|
|
|
// add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
|
|
TEST(OperatorRegistrationTest, Add) {
|
|
EValue values[4];
|
|
values[0] = EValue(at::ones({2, 3}));
|
|
values[1] = EValue(at::ones({2, 3}));
|
|
values[2] = EValue(int64_t(1));
|
|
values[3] = EValue(at::zeros({2, 3}));
|
|
ASSERT_TRUE(hasOpsFn("aten::add.out"));
|
|
auto op = getOpsFn("aten::add.out");
|
|
|
|
EValue* kernel_values[4];
|
|
for (size_t i = 0; i < 4; i++) {
|
|
kernel_values[i] = &values[i];
|
|
}
|
|
op(kernel_values);
|
|
at::Tensor expected = at::ones({2, 3});
|
|
expected = at::fill(expected, 2);
|
|
ASSERT_TRUE(expected.equal(kernel_values[3]->toTensor()));
|
|
|
|
}
|
|
} // namespace executor
|
|
} // namespace torch
|