pytorch/torch/distributed/tensor/parallel/loss.py
Wanchao Liang 2ee6b97464 [dtensor] move DTensor to public namespace (#133113)
Moving DTensor to be in the public namespace, to formally add the
documentation page that includes all the public APIs. This includes:

* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next
  PRs)
* To preserve the BC for users still using the `torch.distributed._tensor`,
  I added a shim script to redirect old path calls to the new module

The BC preserving is evidented by the fact that all DTensor tests are still
working without changing the public imports. So it's safe to land the
changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113
Approved by: https://github.com/XilunWu
ghstack dependencies: #133305, #133306
2024-08-17 05:09:52 +00:00

490 lines
17 KiB
Python

# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import contextlib
from typing import cast, Dict, Optional, Tuple
import torch
import torch._prims_common as utils
import torch.distributed._functional_collectives as funcol
import torch.distributed.distributed_c10d as c10d
from torch import Tensor
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor import DTensor, Replicate, Shard
from torch.distributed.tensor._ops._embedding_ops import _MaskPartial
from torch.distributed.tensor._ops._math_ops import (
_skip_dim,
Reduction,
replicate_reduction_dims,
)
from torch.distributed.tensor.placement_types import DTensorSpec, Placement, TensorMeta
aten = torch.ops.aten
__all__ = ["loss_parallel"]
@contextlib.contextmanager
def loss_parallel():
"""
A context manager that enables loss parallelism, where efficient parallelized loss computation
can be performed when the input is sharded on the class dimension. Currently only the cross-entropy
loss is supported.
Within this context manager, one can use :func:`~torch.nn.functional.cross_entropy` or
:class:`~torch.nn.CrossEntropyLoss` as usual, with the following assumptions on the input parameters.
The corresponding ``backward()`` call, if any, also needs to happen under this context manager.
Args:
input (:class:`DTensor`):
Input logits. Assumed to be sharded on the class dimension.
target (Union[:class:`torch.Tensor`, :class:`DTensor`]):
Must be ground truth class indices (class probabilities currently not supported).
Assumed to be replicated across the ``DeviceMesh``.
weight (Union[:class:`torch.Tensor`, :class:`DTensor`], optional):
If given, assumed to be replicated across the ``DeviceMesh``.
label_smoothing:
Currently not supported.
Returns:
A replicated :class:`DTensor`.
Example:
A sharded DTensor is manually created here to showcase the usage.
In practice, it is usually the output of a TP module.
>>> # xdoctest: +SKIP("distributed")
>>> from torch.distributed.tensor.parallel import loss_parallel
>>> from torch.distributed.device_mesh import init_device_mesh
>>> ...
>>> device_mesh = init_device_mesh("cuda", (8,))
>>> input = torch.randn(4, 16, device="cuda", requires_grad=True)
>>> dist_input = distribute_tensor(input, device_mesh, placements=[Shard(1)])
>>> target = torch.randint(16, (4,), device="cuda")
>>> with loss_parallel():
>>> loss = F.cross_entropy(dist_input, target, reduction="mean")
>>> loss.backward()
>>> ...
"""
_enable_custom_loss_ops()
yield
_disable_custom_loss_ops()
# Currently only needs to support one dimensional DeviceMesh; in general return
# the mesh_dim with placements[mesh_dim].is_shard(dim)
def _find_all_reduce_mesh_dim(placements: Tuple[Placement, ...], dim: int) -> int:
if not len(placements) == 1:
raise ValueError(
"Currently loss_parallel() only supports input on one-dimensional DeviceMesh."
)
if not placements[0].is_shard(dim):
raise ValueError(
f"loss_parallel() should be enabled only when the input tensor is sharded on dimension {dim}."
)
return 0
def _cast_to_dtensor(
tensor, placements: Tuple[Placement, ...], mesh: DeviceMesh
) -> DTensor:
if isinstance(tensor, DTensor):
if tensor.placements == placements:
return tensor
else:
raise RuntimeError(f"Expected {placements} but got {tensor.placements}.")
elif isinstance(tensor, torch.Tensor):
return DTensor.from_local(
tensor, device_mesh=mesh, placements=placements, run_check=False
)
else:
raise TypeError(f"Unsupported type {type(tensor)}")
def _propagate_tensor_meta(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> TensorMeta:
op_info = DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
tensor_meta = DTensor._op_dispatcher.sharding_propagator._propagate_tensor_meta(
op_info.schema
)
if isinstance(tensor_meta, TensorMeta):
return tensor_meta
elif isinstance(tensor_meta, tuple):
return tensor_meta[0]
else:
raise RuntimeError(f"Unexpected tensor meta type: {type(tensor_meta)}.")
# NOTE: The implementation follows torch._decomp.decomposition._log_softmax,
# with all_reduce manually inserted to perform distributed computation.
def _log_softmax(x, dim, half_to_float, mesh, mesh_dim):
x = x.contiguous()
if half_to_float:
assert x.dtype == torch.half
computation_dtype, result_dtype = utils.elementwise_dtypes(
x, type_promotion_kind=utils.ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
x = x.to(computation_dtype)
if x.numel() == 0:
shifted = x
else:
x_max = torch.amax(x, dim, keepdim=True)
x_max = funcol.all_reduce(
x_max, reduceOp=c10d.ReduceOp.MAX.name, group=(mesh, mesh_dim)
)
shifted = x - x_max
shifted_sumexp = torch.sum(torch.exp(shifted), dim, keepdim=True)
shifted_sumexp = funcol.all_reduce(
shifted_sumexp, reduceOp=c10d.ReduceOp.SUM.name, group=(mesh, mesh_dim)
)
shifted_logsumexp = torch.log(shifted_sumexp)
result = shifted - shifted_logsumexp
if not half_to_float:
result = result.to(result_dtype)
return result
def _log_softmax_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
x = cast(DTensor, args[0])
dim = cast(int, args[1])
half_to_float = cast(bool, args[2])
spec = x._spec
mesh_dim = _find_all_reduce_mesh_dim(spec.placements, dim)
output_tensor_meta = _propagate_tensor_meta(op_call, args, kwargs)
res = _log_softmax(x._local_tensor, dim, half_to_float, spec.mesh, mesh_dim)
res_spec = DTensorSpec(
spec.mesh,
spec.placements,
tensor_meta=output_tensor_meta,
)
return DTensor(
res,
res_spec,
requires_grad=res.requires_grad,
)
# NOTE: As explained below at _nll_loss_and_log_softmax_backward, the
# _log_softmax_backward_handler does not actually do any computation.
def _log_softmax_backward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
grad_output = cast(DTensor, args[0])
input_dtype = cast(torch.dtype, args[3])
return grad_output.to(input_dtype)
# NOTE: The implementation follows torch._decomp.decomposition._nll_loss_forward,
# with customized communication inserted to perform distributed computation.
def _nll_loss_forward(
x: Tensor,
target: Tensor,
weight: Optional[Tensor],
local_weight: Optional[Tensor],
reduction: int,
ignore_index: int,
input_shape: torch.Size,
channel_dim: int,
mesh: DeviceMesh,
mesh_dim: int,
) -> Tuple[Tensor, Tensor]:
n_dims = x.dim()
channel_dim = 1
if n_dims < 2:
channel_dim = 0
def _weight_view(weight: Tensor) -> Tensor:
if n_dims > 1:
shape = [
1,
] * n_dims
shape[channel_dim] = weight.shape[0]
w = weight.view(shape)
else:
w = weight
return w
if weight is not None:
w = _weight_view(weight)
assert local_weight is not None
local_w = _weight_view(local_weight)
x = x * local_w
safe_target = torch.where(target != ignore_index, target, 0)
safe_target_ = safe_target.unsqueeze(channel_dim)
# The following code block is a distributed version of
# result = -torch.gather(self, channel_dim, safe_target_).squeeze(channel_dim)
partial_placement = _MaskPartial(offset_shape=input_shape, offset_dim=channel_dim)
safe_target_partial_ = partial_placement._partition_value(
safe_target_, mesh, mesh_dim
)
result_partial = torch.gather(x, channel_dim, safe_target_partial_)
# an all_reduce happens here
result_reduced = partial_placement._reduce_value(result_partial, mesh, mesh_dim)
result = -result_reduced.squeeze(channel_dim)
result = torch.where(target != ignore_index, result, 0)
if reduction == Reduction.NONE.value and n_dims > 1:
total_weight = x.new_full((), 0.0)
return result, total_weight
if weight is not None:
new_shape = list(x.shape)
new_shape[channel_dim] = -1
w = w.expand(new_shape)
wsum = torch.gather(w, channel_dim, safe_target_).squeeze(channel_dim)
wsum = torch.where(target != ignore_index, wsum, 0)
total_weight = wsum.sum()
else:
total_weight = (target != ignore_index).sum().to(x)
# NOTE: this is correct only on 1D DeviceMesh; o/w additional
# all-reduce on result and total_weight is needed
if reduction == Reduction.SUM.value:
result = result.sum()
elif reduction == Reduction.MEAN.value:
result = result.sum() / total_weight
return result, total_weight
def _nll_loss_forward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
x = cast(DTensor, args[0])
target = args[1]
weight = args[2]
reduction = cast(int, args[3])
ignore_index = cast(int, args[4])
channel_dim = 1 if x.dim() >= 2 else 0
channel_dim_size = x.shape[channel_dim]
spec = x._spec
mesh_dim = _find_all_reduce_mesh_dim(spec.placements, channel_dim)
# Check user input: if target and weight are not DTensors, convert them to DTensors;
# if they are DTensors, check that they have the desired placements.
target_placements = _skip_dim(
replicate_reduction_dims(spec.placements, [channel_dim]), channel_dim
)
all_replicate_placements = (Replicate(),) * spec.mesh.ndim
target = _cast_to_dtensor(target, target_placements, spec.mesh)
local_weight = None
if weight is not None:
weight = _cast_to_dtensor(weight, all_replicate_placements, spec.mesh)
# For local computation, both (replicated) weight and (sharded) local_weight
# are needed in _nll_loss_forward(). local_weight is generated here using
# DTensor API, without incurring any communication.
sharded_placements = [
Shard(0) if i == mesh_dim else Replicate() for i in range(spec.mesh.ndim)
]
local_weight = weight.redistribute(spec.mesh, sharded_placements)._local_tensor
assert local_weight.shape[0] == x._local_tensor.shape[channel_dim]
if reduction == Reduction.NONE.value:
output_placements = target_placements
else:
output_placements = all_replicate_placements
# tensor inputs to _propagate_tensor_meta need to be DTensors
args = list(args)
args[1], args[2] = target, weight
output_tensor_meta = _propagate_tensor_meta(op_call, tuple(args), kwargs)
result, total_weight = _nll_loss_forward(
x._local_tensor,
target._local_tensor,
weight._local_tensor if weight is not None else None,
local_weight,
reduction,
ignore_index,
x.shape,
channel_dim,
spec.mesh,
mesh_dim,
)
out_spec = DTensorSpec(spec.mesh, output_placements, tensor_meta=output_tensor_meta)
return (
DTensor(
result,
out_spec,
requires_grad=result.requires_grad,
),
total_weight,
)
# NOTE: The backward computation of cross_entropy goes through two steps:
# backward for nll_loss and then backward for log_softmax. In loss parallel,
# the two steps are fused into the following function (called by _nll_loss_backward_handler)
# to avoid communication when target contains class indices not class probabilities.
# Also note that the _log_softmax_backward_handler does not perform computation.
# The implementation resembles _nll_loss_backward and _log_softmax_backward_data
# from torch._decomp.decomposition.
def _nll_loss_and_log_softmax_backward(
grad_output: Tensor,
x: Tensor,
target: Tensor,
weight: Optional[Tensor],
reduction: int,
ignore_index: int,
total_weight: Tensor,
input_shape: torch.Size,
channel_dim: int,
mesh: DeviceMesh,
mesh_dim: int,
) -> Tensor:
channel_dim = 0 if x.dim() < 2 else 1
if reduction == Reduction.MEAN.value:
grad_output = grad_output / total_weight
target = target.unsqueeze(channel_dim)
safe_target = torch.where(target != ignore_index, target, 0)
grad_input = torch.zeros_like(x)
# The following code block is a distributed version of
# grad_input = torch.scatter(grad_input, channel_dim, safe_target, -1.0)
partial_placement = _MaskPartial(offset_shape=input_shape, offset_dim=channel_dim)
safe_target = safe_target.squeeze(channel_dim).flatten()
masked_safe_target = partial_placement._partition_value(safe_target, mesh, mesh_dim)
# only update grad_input to -1 if not masked
assert partial_placement.mask_buffer.data is not None
grad_update = partial_placement.mask_buffer.data.to(grad_input.dtype) - 1.0
arange_1d = torch.arange(
masked_safe_target.shape[0], device=masked_safe_target.device
)
# The first two cases with x.dim() <= 2 are for aten.nll_loss_backward.default;
# the last case is for aten.nll_loss2d_backward.default.
if x.dim() == 1:
grad_input[masked_safe_target] = grad_update
elif x.dim() == 2:
grad_input[arange_1d, masked_safe_target] = grad_update
else:
grad_input_t = grad_input.transpose(channel_dim, -1)
intermidate_shape = grad_input_t.shape
grad_input_2d = grad_input_t.reshape(-1, x.shape[channel_dim])
grad_input_2d[arange_1d, masked_safe_target] = grad_update
grad_input = grad_input_2d.view(intermidate_shape).transpose(channel_dim, -1)
if grad_input.dim() > grad_output.dim() > 0:
grad_output = grad_output.unsqueeze(channel_dim)
if weight is not None:
new_shape = [1 for _ in range(x.dim())]
new_shape[channel_dim] = weight.shape[0]
weight = weight.reshape(new_shape)
# In order for fused computation to work, the following line is rewritten.
# grad_output = grad_output * weight
new_shape = list(x.shape)
new_shape[channel_dim] = -1
w = weight.expand(new_shape)
w_target = torch.gather(w, channel_dim, target)
grad_output = grad_output * w_target
grad_output = torch.where(target != ignore_index, grad_output, 0)
# NOTE: Instead of directly returning the grad_input as grad_output for log_softmax,
# here we perform backward computation for log_softmax altogether to avoid the
# otherwise extra all_gather communication.
# return grad_input * grad_output
return (grad_input + torch.exp(x)) * grad_output
def _nll_loss_backward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
grad_output = cast(DTensor, args[0])
x = cast(DTensor, args[1])
target = args[2]
weight = args[3]
reduction = cast(int, args[4])
ignore_index = cast(int, args[5])
total_weight = cast(Tensor, args[6])
channel_dim = 1 if x.dim() >= 2 else 0
spec = x._spec
mesh_dim = _find_all_reduce_mesh_dim(spec.placements, channel_dim)
# if target and weight are not DTensors, convert them to DTensors
target_placements = _skip_dim(
replicate_reduction_dims(spec.placements, [channel_dim]), channel_dim
)
all_replicate_placements = (Replicate(),) * spec.mesh.ndim
target = _cast_to_dtensor(target, target_placements, spec.mesh)
if weight is not None:
weight = _cast_to_dtensor(weight, all_replicate_placements, spec.mesh)
# tensor inputs to _propagate_tensor_meta need to be DTensors
args = list(args)
args[2], args[3] = target, weight
args[6] = _cast_to_dtensor(total_weight, all_replicate_placements, spec.mesh)
output_tensor_meta = _propagate_tensor_meta(op_call, tuple(args), kwargs)
result = _nll_loss_and_log_softmax_backward(
grad_output._local_tensor,
x._local_tensor,
target._local_tensor,
weight._local_tensor if weight is not None else None,
reduction,
ignore_index,
total_weight,
x.shape,
channel_dim,
spec.mesh,
mesh_dim,
)
# the output sharding is the same as input sharding: Shard(channel_dim) on mesh_dim
out_spec = DTensorSpec(
spec.mesh,
spec.placements,
tensor_meta=output_tensor_meta,
)
return DTensor(
result,
out_spec,
requires_grad=result.requires_grad,
)
customized_loss_ops = {
aten._log_softmax.default: _log_softmax_handler,
aten._log_softmax_backward_data.default: _log_softmax_backward_handler,
aten.nll_loss_forward.default: _nll_loss_forward_handler,
aten.nll_loss2d_forward.default: _nll_loss_forward_handler,
aten.nll_loss_backward.default: _nll_loss_backward_handler,
aten.nll_loss2d_backward.default: _nll_loss_backward_handler,
}
def _enable_custom_loss_ops():
DTensor._op_dispatcher._custom_op_handlers.update(customized_loss_ops)
def _disable_custom_loss_ops():
for custom_op in customized_loss_ops:
DTensor._op_dispatcher._custom_op_handlers.pop(custom_op)