pytorch/torch/distributed/tensor/experimental/attention.py
Wanchao Liang 2ee6b97464 [dtensor] move DTensor to public namespace (#133113)
Moving DTensor to be in the public namespace, to formally add the
documentation page that includes all the public APIs. This includes:

* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next
  PRs)
* To preserve the BC for users still using the `torch.distributed._tensor`,
  I added a shim script to redirect old path calls to the new module

The BC preserving is evidented by the fact that all DTensor tests are still
working without changing the public imports. So it's safe to land the
changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113
Approved by: https://github.com/XilunWu
ghstack dependencies: #133305, #133306
2024-08-17 05:09:52 +00:00

868 lines
29 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
import contextlib
import itertools
import logging
import types
import weakref
from enum import Enum
from typing import (
Any,
Callable,
Dict,
Generator,
List,
Optional,
Protocol,
Set,
Tuple,
Union,
)
import torch
import torch.distributed as dist
import torch.distributed._functional_collectives as ft_c
import torch.nn.functional as F
from torch import nn
from torch.distributed.device_mesh import DeviceMesh
from torch.distributed.tensor import distribute_module, DTensor, Replicate, Shard
from torch.distributed.tensor.parallel.style import ParallelStyle
# TODO: expose a single API
__all__ = ["context_parallel"]
aten = torch.ops.aten
logger = logging.getLogger(__name__)
# Whether to upcast parameters and gradients to float32 to avoid accumulation
# errors. It is likely this is always True but we currently keep this variable
# for the experimental purpose.
_convert_to_f32 = True
class _CausalBehavior(Enum):
SKIP = None
NOT_IS_CAUSAL = False
IS_CAUSAL = True
def _is_causal_behavior(
rank: int, world_size: int, i: int, is_causal: bool
) -> _CausalBehavior:
"""
Calculate is_causal behavior for each KV block. The attention can either be
calculated in full, not at all or with the causal mask applied.
"""
if not is_causal:
return _CausalBehavior.NOT_IS_CAUSAL
if i == 0:
return _CausalBehavior.IS_CAUSAL
source_rank = (rank - i) % world_size
if source_rank < rank:
return _CausalBehavior.NOT_IS_CAUSAL
else:
return _CausalBehavior.SKIP
def _maybe_wait(tensor: torch.Tensor) -> torch.Tensor:
"""
When tracing the code, the result tensor is not an AsyncCollectiveTensor,
so we cannot call ``wait()``.
"""
if isinstance(tensor, ft_c.AsyncCollectiveTensor):
return tensor.wait()
return tensor
class _SDPAMerger:
"""A class to help to merge the local SDPA result."""
def __init__(self, convert_to_f32: bool):
self._out: Optional[torch.Tensor] = None
self._lse: Optional[torch.Tensor] = None
self._convert_to_f32 = convert_to_f32
self._out_dtype = torch.float32
self._lse_dtype = torch.float32
def _merge_one(self, block_out: torch.Tensor, block_lse: torch.Tensor) -> None:
block_lse = block_lse.unsqueeze(dim=-1)
if self._lse is None:
self._lse = block_lse
self._out = block_out
else:
# The algorithm from
# github.com/zhuzilin/ring-flash-attention/pull/34#issuecomment-2076126795
# gives a relatively stable result.
self._out = self._out - F.sigmoid(block_lse - self._lse) * (
self._out - block_out
)
self._lse = self._lse - F.logsigmoid(self._lse - block_lse)
def step(self, out: torch.Tensor, lse: torch.Tensor) -> None:
self._out_dtype = out.dtype
self._lse_dtype = lse.dtype
if self._convert_to_f32:
out = out.to(torch.float32)
lse = lse.to(torch.float32)
self._merge_one(out, lse)
def results(self) -> Tuple[torch.Tensor, torch.Tensor]:
assert self._out is not None
assert self._lse is not None
out, lse = self._out, self._lse.squeeze(-1)
return out.to(self._out_dtype), lse.to(self._lse_dtype)
def _scaled_dot_product_ring_flash_attention(
mesh: DeviceMesh,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
is_causal: bool = False,
return_debug_mask: bool = False,
*,
scale: Optional[float] = None,
) -> Tuple[torch.Tensor, ...]:
if return_debug_mask:
raise NotImplementedError("return_debug_mask is not supported yet")
return _templated_ring_attention(
mesh,
aten._scaled_dot_product_flash_attention,
query=query,
key=key,
value=value,
is_causal=is_causal,
dropout_p=dropout_p,
scale=scale,
)
def _scaled_dot_product_ring_efficient_attention(
mesh: DeviceMesh,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
compute_log_sumexp: bool = True,
dropout_p: float = 0.0,
is_causal: bool = False,
*,
scale: Optional[float] = None,
) -> Tuple[torch.Tensor, ...]:
if attn_bias is not None:
raise NotImplementedError("attn_bias is not supported yet")
if not compute_log_sumexp:
raise NotImplementedError("compute_log_sumexp must be set")
return _templated_ring_attention(
mesh,
aten._scaled_dot_product_efficient_attention,
query=query,
key=key,
value=value,
is_causal=is_causal,
attn_bias=attn_bias,
dropout_p=dropout_p,
scale=scale,
compute_log_sumexp=compute_log_sumexp,
)
class _AttentionOp(Protocol):
def __call__(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
**kwargs: object,
) -> Tuple[torch.Tensor, ...]:
...
def _ring_rotate(
block: torch.Tensor, pg: dist.ProcessGroup, send_to_next: bool
) -> torch.Tensor:
size = dist.get_world_size(pg)
dsts = (
list(range(1, size)) + [0]
if send_to_next
else [size - 1] + list(range(0, size - 1))
)
return ft_c.permute_tensor(block, dsts, pg)
def _templated_ring_attention(
mesh: DeviceMesh,
op: _AttentionOp,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
**kwargs: object,
) -> Tuple[torch.Tensor, ...]:
"""
This is a generalized ring attention implementation that can support multiple attention ops.
Parameters
----------
op:
The attention op to use
*args:
additional args are passed to the op
**kwargs:
additional kwargs are passed to the op
Returns
-------
out:
The merged attention output
softmax_lse:
The logsumexp of the merged attention output
"""
if is_causal and (query.size(2) != key.size(2)):
raise NotImplementedError(
"is_causal requires the same query and context sequence lengths"
)
if isinstance(mesh, dist.ProcessGroup):
pg: Union[dist.ProcessGroup, List[dist.ProcessGroup]] = mesh
else:
pg = mesh.get_group()
assert isinstance(pg, dist.ProcessGroup), "process group must be single dimension"
rank = dist.get_rank(pg)
size = dist.get_world_size(pg)
next_kv = None
# Without making key and value contiguous(), the lose curve is bad.
# TODO(fegin): figure out why this is a requirement since SDPA does not have
# this requirement.
key = key.contiguous()
value = value.contiguous()
sdpa_merger = _SDPAMerger(_convert_to_f32)
rest: List[Any]
out: torch.Tensor
logsumexp: torch.Tensor
for i in range(size):
# overlap communication with compute
if next_kv is not None:
next_kv = _maybe_wait(next_kv)
key = next_kv[: key.numel()].reshape(key.shape)
value = next_kv[key.numel() :].reshape(value.shape)
if i < (size - 1):
next_kv = torch.cat([key.flatten(), value.flatten()])
next_kv = _ring_rotate(next_kv, pg, send_to_next=True)
is_causal_behavior = _is_causal_behavior(
rank=rank, world_size=size, i=i, is_causal=is_causal
)
if is_causal_behavior != _CausalBehavior.SKIP:
out, logsumexp, *rest = op(
query,
key,
value,
is_causal=is_causal_behavior.value,
**kwargs,
)
sdpa_merger.step(out, logsumexp)
return *sdpa_merger.results(), *rest
def _sdpa_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
# extract local tensor and sharding infos to a OpInfo
op_info = DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
logger.debug("Dispatching op_call: %s", op_info.schema)
# sharding propagation
# TODO: remove the context parallel strategy from the default propagation
# rule. Either figure out how to dynamically enable it or just don't call
# propagate.
DTensor._op_dispatcher.sharding_propagator.propagate(op_info)
output_sharding = op_info.output_sharding
assert output_sharding is not None, "output sharding should not be None"
assert not output_sharding.needs_redistribute, "inputs need to be redistributed"
if op_call == aten._scaled_dot_product_flash_attention.default:
local_results = _scaled_dot_product_ring_flash_attention(
op_info.mesh,
*op_info.local_args, # type: ignore[arg-type]
**op_info.local_kwargs, # type: ignore[arg-type]
)
elif op_call == aten._scaled_dot_product_efficient_attention.default:
local_results = _scaled_dot_product_ring_efficient_attention(
op_info.mesh,
*op_info.local_args, # type: ignore[arg-type]
**op_info.local_kwargs, # type: ignore[arg-type]
)
else:
raise NotImplementedError(
"CP only supports flash attention and memory efficient attention now."
)
return DTensor._op_dispatcher.wrap(local_results, output_sharding.output_spec)
def _sdpa_backward_handler(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
) -> object:
# Redistribute grad_output tensor to the same placement as output tensor
args = list(args)
args = tuple(args)
# extract local tensor and sharding infos to a OpInfo
op_info = DTensor._op_dispatcher.unwrap_to_op_info(op_call, args, kwargs)
logger.debug("Dispatching op_call: %s", op_info.schema)
# sharding propagation
DTensor._op_dispatcher.sharding_propagator.propagate(op_info)
output_sharding = op_info.output_sharding
assert output_sharding is not None, "output sharding should not be None"
assert not output_sharding.needs_redistribute, "inputs need to be redistributed"
if op_call == aten._scaled_dot_product_flash_attention_backward.default:
local_results = _scaled_dot_product_ring_flash_attention_backward(
op_info.mesh,
*op_info.local_args, # type: ignore[arg-type]
**op_info.local_kwargs, # type: ignore[arg-type]
)
elif op_call == aten._scaled_dot_product_efficient_attention_backward.default:
local_results = _scaled_dot_product_ring_efficient_attention_backward(
op_info.mesh,
*op_info.local_args, # type: ignore[arg-type]
**op_info.local_kwargs, # type: ignore[arg-type]
)
else:
raise NotImplementedError(f"{op_call=}")
return DTensor._op_dispatcher.wrap(local_results, output_sharding.output_spec)
def _templated_ring_attention_backward(
mesh: DeviceMesh,
op: _AttentionOp,
grad_out: torch.Tensor,
grad_out_name: str,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
is_causal: bool,
**kwargs: Any,
) -> Tuple[torch.Tensor, ...]:
pg = mesh.get_group()
assert isinstance(pg, dist.ProcessGroup), "must be single dimension"
rank = dist.get_rank(pg)
size = dist.get_world_size(pg)
next_kv = None
next_grad_kv = None
rest: List[Any]
grad_query_, grad_key_, grad_value_ = None, None, None
accum_dtype = torch.float32 if _convert_to_f32 else query.dtype
grad_query = torch.zeros_like(query, dtype=accum_dtype)
grad_key = torch.zeros_like(key, dtype=accum_dtype)
grad_value = torch.zeros_like(value, dtype=accum_dtype)
key = key.contiguous()
value = value.contiguous()
for i in range(size):
if next_kv is not None:
buffer = _maybe_wait(next_kv)
pointer = 0
key = buffer[pointer : pointer + key.numel()].reshape(key.shape)
pointer += key.numel()
value = buffer[pointer : pointer + value.numel()].reshape(value.shape)
pointer += value.numel()
if i != size - 1:
next_kv = torch.cat([key.flatten(), value.flatten()])
next_kv = _ring_rotate(next_kv, pg, send_to_next=True)
is_causal_behavior = _is_causal_behavior(
rank=rank, world_size=size, i=i, is_causal=is_causal
)
if is_causal_behavior != _CausalBehavior.SKIP:
kwargs[grad_out_name] = grad_out
grad_query_, grad_key_, grad_value_, *rest = op(
query=query,
key=key,
value=value,
out=out,
logsumexp=logsumexp,
is_causal=is_causal_behavior.value,
**kwargs,
)
else:
grad_query_ = torch.zeros_like(query, dtype=accum_dtype)
grad_key_ = torch.zeros_like(key, dtype=accum_dtype)
grad_value_ = torch.zeros_like(value, dtype=accum_dtype)
# Get the grad key and grad value for the i round.
if i > 0:
pointer = 0
assert next_grad_kv is not None
next_grad_kv = _maybe_wait(next_grad_kv)
grad_key = next_grad_kv[pointer : pointer + grad_key.numel()].reshape(
grad_key.shape
)
pointer += grad_key.numel()
grad_value = next_grad_kv[pointer : pointer + grad_value.numel()].reshape(
grad_value.shape
)
grad_key += grad_key_
grad_value += grad_value_
# Send the key, value, grad key, and grad value to the next rank.
next_grad_kv = torch.cat([grad_key.flatten(), grad_value.flatten()])
next_grad_kv = _ring_rotate(next_grad_kv, pg, send_to_next=True)
grad_query += grad_query_
assert next_grad_kv is not None
assert grad_key_ is not None
assert grad_value_ is not None
grad_query = grad_query.to(query.dtype)
next_grad_kv = _maybe_wait(next_grad_kv).to(key.dtype)
grad_key = next_grad_kv[: grad_key.numel()].reshape(grad_key.shape)
grad_value = next_grad_kv[grad_value.numel() :].reshape(grad_value.shape)
return (
grad_query,
grad_key,
grad_value,
*rest,
)
def _scaled_dot_product_ring_flash_attention_backward(
mesh: DeviceMesh,
grad_out: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
cum_seq_q: torch.Tensor,
cum_seq_k: torch.Tensor,
max_q: int,
max_k: int,
dropout_p: float,
is_causal: bool,
philox_seed: torch.Tensor,
philox_offset: torch.Tensor,
*,
scale: Optional[float] = None,
) -> Tuple[torch.Tensor, ...]:
return _templated_ring_attention_backward(
mesh,
aten._scaled_dot_product_flash_attention_backward.default,
grad_out=grad_out,
grad_out_name="grad_out",
query=query,
key=key,
value=value,
out=out,
logsumexp=logsumexp,
is_causal=is_causal,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=max_q,
max_k=max_k,
dropout_p=dropout_p,
philox_seed=philox_seed,
philox_offset=philox_offset,
scale=scale,
)
def _scaled_dot_product_ring_efficient_attention_backward(
mesh: DeviceMesh,
grad_out: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
bias: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
philox_seed: torch.Tensor,
philox_offset: torch.Tensor,
dropout_p: float,
grad_input_mask: Tuple[bool, ...],
is_causal: bool = False,
*,
scale: Optional[float] = None,
) -> Tuple[torch.Tensor, ...]:
return _templated_ring_attention_backward(
mesh,
aten._scaled_dot_product_efficient_attention_backward.default,
grad_out=grad_out,
grad_out_name="grad_out_",
query=query,
key=key,
value=value,
attn_bias=bias,
out=out,
logsumexp=logsumexp,
philox_seed=philox_seed,
philox_offset=philox_offset,
dropout_p=dropout_p,
grad_input_mask=grad_input_mask,
is_causal=is_causal,
scale=scale,
)
customized_ops = {
aten._scaled_dot_product_flash_attention.default: _sdpa_handler,
aten._scaled_dot_product_flash_attention_backward.default: _sdpa_backward_handler,
aten._scaled_dot_product_efficient_attention.default: _sdpa_handler,
aten._scaled_dot_product_efficient_attention_backward.default: _sdpa_backward_handler,
}
_replaced_functions: Dict[Callable, Tuple[str, Callable]] = {}
def _distribute_function(
fn: Callable,
fn_module: types.ModuleType,
device_mesh: DeviceMesh,
input_fn: Optional[Callable] = None,
output_fn: Optional[Callable] = None,
) -> None:
"""
``distribute_function`` is an experimental API that allows users to "distribute"
the inputs and outputs of a function. Similar to ``distribute_module``, this API
installs hooks to the ``fn`` to convert the inputs and outputs. There are two
major differences between ``distribute_function`` and ``distribute_module``.
First, a function does not have parammeters and buffers, as a result,
``distribute_function`` itself won't convert any parameters/buffers but simply
install the input and output hooks. The tensor conversion will happen in the hooks.
Another difference is an nn.Module subclass can have several instances and each
instance be fed into ``distribute_module`` independently with affecting other
instance. On the other hand, function is a singleton object. So if a function
is distributed by ``distribute_function`` all subsequent calls to the function
will invoke the installed hooks.
Args:
fn (Callable): the function to be distributed.
fn_module (types.ModuleType): the Python module that the function is declared.
e.g., if ``fn`` is ``torch.nn.functional.scaled_dot_product_attention``,
``fn_module`` is ``torch.nn.functional``.
device_mesh (:class:`DeviceMesh`): the device mesh that will be used by the
input and output hooks to distribute the tensors.
input_fn (Optioinal[Callable]): the hook to distribute or convert the input
arguments of ``fn``.
output_fn (Optioinal[Callable]): the hook to distribute or convert the output
arguments of ``fn``.
"""
def wrapper(
target_fn: Callable, input_fn: Optional[Callable], output_fn: Optional[Callable]
) -> Callable:
def inner_fn(*args: Tuple[Any, ...], **kwargs: Dict[str, Any]) -> Any:
if input_fn is not None:
args, kwargs = input_fn(device_mesh, *args, **kwargs)
output = target_fn(*args, **kwargs)
if output_fn is not None:
output = output_fn(device_mesh, output)
return output
return inner_fn
global _replaced_functions
if fn in _replaced_functions:
return
wrapper_fn = wrapper(fn, input_fn, output_fn)
setattr(fn_module, fn.__name__, wrapper_fn)
_replaced_functions[wrapper_fn] = (fn.__name__, fn)
def _restore_function(fn: Callable, fn_module: types.ModuleType) -> None:
"""Restore the function that is replaced by _distribute_function."""
global _original_functions
global _wrapper_functions
if fn not in _replaced_functions:
return
original_name, original_fn = _replaced_functions[fn]
setattr(fn_module, original_name, original_fn)
@contextlib.contextmanager
def _enable_cp_dispatcher() -> Generator[None, None, None]:
"""Enables DTensor dispatcher to dispatch SDPA to CP."""
old_handlers = DTensor._op_dispatcher._custom_op_handlers
DTensor._op_dispatcher._custom_op_handlers = {**old_handlers, **customized_ops}
yield
DTensor._op_dispatcher._custom_op_handlers = old_handlers
class _AttentionContextParallel(ParallelStyle):
"""
Applies context parallel optimizations to the attention layer.
This will work for nn.MultiHeadedAttention and custom attention layers that
call F.scaled_dotproduct_attention with a simliar signature.
This expects the `forward` method consumes either:
* a single tensor for self attention
* one argument for each of: query, key, value
This currently only supports ring attention and the
SDPBackend.FLASH_ATTENTION backend. See sdpa_kernel.
Non-flash attention backends will result in incorrect results.
"""
# use a weakref dictionary to store context managers for each nn.Module
_CONTEXT_MANAGERS: "weakref.WeakKeyDictionary[nn.Module, Any]" = (
weakref.WeakKeyDictionary()
)
def _apply(self, module: nn.Module, device_mesh: DeviceMesh) -> nn.Module:
if not isinstance(device_mesh, DeviceMesh):
raise ValueError(
f"{type(device_mesh)} is not supported by {type(self)} yet."
)
if not device_mesh.ndim == 1:
raise ValueError
return distribute_module(
module,
device_mesh,
input_fn=self._input_fn, # type: ignore[arg-type]
output_fn=self._output_fn, # type: ignore[arg-type]
)
@classmethod
def _input_fn(
cls,
module: nn.Module,
inputs: Tuple[Union[torch.Tensor, int, float], ...],
device_mesh: DeviceMesh,
) -> Tuple[Union[torch.Tensor, int, float], ...]:
# TODO(d4l3k); this should be Shard(2), need to fix Linear layer rules
placement = [Replicate()]
def backward_hook(grad: torch.Tensor) -> None:
if module in cls._CONTEXT_MANAGERS:
cls._CONTEXT_MANAGERS[module].__exit__(None, None, None)
del cls._CONTEXT_MANAGERS[module]
# convert inputs to DTensor
inp = []
for input in inputs:
if isinstance(input, torch.Tensor) and not isinstance(input, DTensor):
input = DTensor.from_local(
input.contiguous(), device_mesh, placement, run_check=False
)
if isinstance(input, torch.Tensor) and input.requires_grad:
input.register_hook(backward_hook)
inp.append(input)
manager = _enable_cp_dispatcher()
manager.__enter__()
cls._CONTEXT_MANAGERS[module] = manager
return tuple(inp)
@classmethod
def _output_fn(
cls,
module: nn.Module,
outputs: Union[torch.Tensor, Tuple[Union[torch.Tensor, int, float], ...]],
device_mesh: DeviceMesh,
) -> Union[
Union[torch.Tensor, int, float], Tuple[Union[torch.Tensor, int, float], ...]
]:
cls._CONTEXT_MANAGERS[module].__exit__(None, None, None)
del cls._CONTEXT_MANAGERS[module]
def backward_hook(grad: torch.Tensor) -> None:
if module not in cls._CONTEXT_MANAGERS:
manager = _enable_cp_dispatcher()
manager.__enter__()
cls._CONTEXT_MANAGERS[module] = manager
# back to local tensor
out = []
for output in [outputs] if isinstance(outputs, torch.Tensor) else outputs:
output = output.to_local() if isinstance(output, DTensor) else output
if isinstance(output, torch.Tensor) and output.requires_grad:
output.register_hook(backward_hook)
out.append(output)
if isinstance(outputs, torch.Tensor):
return out[0]
return tuple(out)
@contextlib.contextmanager
def _context_parallel(seq_dim: int, mesh: DeviceMesh) -> Generator[None, None, None]:
"""Replace SDPA with the CP-wrapped version and enable DTensor CP dispatcher."""
def attention_input_fn(
mesh: DeviceMesh, *args: Tuple[Any, ...], **kwargs: Dict[str, Any]
) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
placement = [Shard(seq_dim)]
all_args = []
for arg in itertools.chain(args, kwargs.values()):
if isinstance(arg, torch.Tensor) and not isinstance(arg, DTensor):
arg = DTensor.from_local(arg, mesh, placement, run_check=False)
all_args.append(arg)
new_args = tuple(all_args[0 : len(args)])
new_kwargs = dict(zip(kwargs.keys(), all_args[len(args) :]))
return new_args, new_kwargs
def attention_output_fn(mesh: DeviceMesh, outputs: Any) -> Any:
new_outputs = []
for output in [outputs] if isinstance(outputs, torch.Tensor) else outputs:
output = output.to_local() if isinstance(output, DTensor) else output
new_outputs.append(output)
if isinstance(outputs, torch.Tensor):
return new_outputs[0]
return tuple(new_outputs)
# TODO: provide a more robust way to replace SDPA.
# Currently we use monkey patch to replace scaled_dot_product_attention with the
# wrapped fn. This is okay if users do `import torch.nn.functional` but will not
# work if users do `import torch.nn.functional.scaled_dot_product_attention`.
_distribute_function(
F.scaled_dot_product_attention,
F,
mesh,
attention_input_fn,
attention_output_fn,
)
with _enable_cp_dispatcher():
yield
_restore_function(F.scaled_dot_product_attention, F)
def _get_sequence_shard(
buffer: torch.Tensor, mesh: DeviceMesh, seq_dim: int
) -> torch.Tensor:
return buffer.chunk(mesh.size(), dim=seq_dim)[mesh.get_local_rank()]
def _context_parallel_buffers(
mesh: DeviceMesh,
buffers: List[torch.Tensor],
buffer_seq_dims: List[int],
) -> List[torch.Tensor]:
"""Shard the buffers along the sequence dimensions according to CP rules."""
new_buffers = []
for buffer, seq_dim in zip(buffers, buffer_seq_dims):
new_buffers.append(_get_sequence_shard(buffer, mesh, seq_dim))
return new_buffers
@contextlib.contextmanager
@torch.no_grad()
def context_parallel(
mesh: DeviceMesh,
*,
buffers: Optional[List[torch.Tensor]] = None,
buffer_seq_dims: Optional[List[int]] = None,
no_restore_buffers: Optional[Set[torch.Tensor]] = None,
) -> Generator[None, None, None]:
"""
``context_parallel`` is an experimental API to enable context
parallelism (CP). This API performs two actions: 1) patch the SDPA
(``torch.nn.functional.scaled_dot_product_attention``) with the CP-enabled
one, 2) shard ``buffers`` along the sequence dimension and each rank will
preserve the corresponding shard according ``mesh``.
Args:
mesh (:class:`DeviceMesh`): the device mesh for the context parallelism.
buffers (Optional[List[torch.Tensor]]): buffers that the usage depend
on the sequence dimension. Examples are input batch, labels and
positional embedding buffers. These buffers must be sharded along
the sequence dimension to ensure the accuracy. The sharding will
happen in-place, the buffer's shape will change within the context.
The buffers will be restored after the context finishes.
``no_restore_buffers`` can be used to specify which buffers don't
need to be restored. Note that ``buffers`` should not contain any
nn.Parameter.
buffer_seq_dims (Optional[List[int]]): the sequence dimensions of ``buffers``.
no_restore_buffers (Optional[Set[torch.Tensor]]): buffers in these set
won't be restored after the context exits. This set must be a subset
of ``buffers``. If the buffers won't be used after the context exits,
these buffers can be put in this list to avoid extra restore time.
.. warning::
`torch.distributed._tensor.experimental.attention.context_parallel` is a
prototype feature in PyTorch. The API is subject to change.
"""
buffers = [] if buffers is None else buffers
buffer_seq_dims = [] if buffer_seq_dims is None else buffer_seq_dims
no_restore_buffers = set() if no_restore_buffers is None else no_restore_buffers
if len(buffers) != len(buffer_seq_dims):
raise ValueError(
"`seq_dims` must have the same number of elements as `buffers`."
)
for buffer in no_restore_buffers:
# Cannot use `if not buffer in buffers` which will incur tensor comparison.
if not any(b is buffer for b in buffers):
raise ValueError("`no_restore_buffers` must be a subset of `buffers`.")
original_buffers = [None if b in no_restore_buffers else b.clone() for b in buffers]
chunks = _context_parallel_buffers(mesh, buffers, buffer_seq_dims)
for buffer, chunk in zip(buffers, chunks):
chunk = chunk.clone()
buffer.resize_(chunk.shape)
buffer.copy_(chunk)
with _context_parallel(seq_dim=2, mesh=mesh):
yield
for buffer, original_buffer in zip(buffers, original_buffers):
if original_buffer is not None:
buffer.resize_(original_buffer.shape)
buffer.copy_(original_buffer)