pytorch/torch/distributed/checkpoint/optimizer.py
Wanchao Liang 2ee6b97464 [dtensor] move DTensor to public namespace (#133113)
Moving DTensor to be in the public namespace, to formally add the
documentation page that includes all the public APIs. This includes:

* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next
  PRs)
* To preserve the BC for users still using the `torch.distributed._tensor`,
  I added a shim script to redirect old path calls to the new module

The BC preserving is evidented by the fact that all DTensor tests are still
working without changing the public imports. So it's safe to land the
changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113
Approved by: https://github.com/XilunWu
ghstack dependencies: #133305, #133306
2024-08-17 05:09:52 +00:00

357 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
import dataclasses
from typing import cast, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch.distributed as dist
from torch._utils import _get_device_module
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import (
TensorProperties as ShardTensorProperties,
)
from torch.distributed._shard.sharded_tensor.shard import Shard
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec
from torch.distributed.checkpoint._nested_dict import unflatten_state_dict
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner
from torch.distributed.checkpoint.metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
Metadata,
MetadataIndex,
STATE_DICT_TYPE,
TensorProperties,
TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import LoadPlan, LoadPlanner
from torch.distributed.checkpoint.planner_helpers import (
_create_read_items,
create_read_items_for_chunk_list,
)
from torch.distributed.checkpoint.state_dict_loader import load_state_dict
from torch.distributed.checkpoint.storage import StorageReader
from torch.distributed.checkpoint.utils import (
_element_wise_add,
_element_wise_sub,
_normalize_device_info,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.remote_device import _remote_device
from torch.distributed.tensor import DTensor
STATE_DICT_2D_LAYOUT = Dict[str, Tuple[Optional[Sequence[int]], Sequence[int]]]
# TODO: Update docstrings for optimizer.py
__all__ = [
"load_sharded_optimizer_state_dict",
]
def _gen_rank_device(global_rank: int, device_type: str = "cuda") -> str:
if device_type == "cpu":
return "cpu"
device_module = _get_device_module(device_type)
if device_module.is_available():
return _normalize_device_info(
device_type, global_rank % device_module.device_count()
)
return "cpu"
def _create_colwise_spec(
pg: Optional[dist.ProcessGroup] = None,
) -> ChunkShardingSpec:
pg_device_type = dist.distributed_c10d._get_pg_default_device(pg).type
if pg is None:
placements = [
f"rank:{idx}/{_gen_rank_device(idx, pg_device_type)}"
for idx in range(dist.get_world_size())
]
else:
placements = [
f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx), pg_device_type)}"
for idx in range(pg.size())
]
return ChunkShardingSpec(
dim=0,
placements=cast(List[Union[_remote_device, str]], placements),
)
def _is_nested_tensor(val: torch.Tensor) -> bool:
if type(val) is ShardedTensor:
if len(val.local_shards()) == 0:
return False
if type(val.local_shards()[0].tensor) is ShardedTensor:
return True
if type(val.local_shards()[0].tensor) is DTensor:
raise ValueError("Cannot handle DTensor nested insided ShardedTensor")
elif type(val) is DTensor and (
type(val._local_tensor) is DTensor or type(val._local_tensor) is ShardedTensor
):
raise ValueError("Cannot handle nested DTensor")
return False
def _alloc_tensor(
props: TensorProperties, size: Sequence[int], device_type: str = "cuda"
) -> torch.Tensor:
if device_type == "cpu":
device = cast(torch.device, _get_device_module(device_type).current_device())
else:
device = torch.device(
device_type, _get_device_module(device_type).current_device()
)
return torch.empty(
size=size,
dtype=props.dtype,
layout=props.layout,
requires_grad=props.requires_grad,
pin_memory=props.pin_memory,
device=device,
)
def _get_state_dict_2d_layout(
state_dict: STATE_DICT_TYPE,
) -> Tuple[STATE_DICT_2D_LAYOUT, Optional[dist.ProcessGroup]]:
"""
Load the right TP slice of the optimizer state.
This is not easy since the per-tensor slicing can't be inferred from checkpoint metadata.
We take advantage of the model state_dict producing a sliced ST to figure out what we need to load.
This is pretty fragile and it might be easier for FSDP to compute this info for us.
Returns a dictionary where keys are the same of the state_dict and the value is a tuple of
(offset, size) for the current rank TP slice.
N.B. The state_dict *MUST* come from FSDP.sharded_state_dict.
"""
specs: STATE_DICT_2D_LAYOUT = {}
dp_pg: Optional[dist.ProcessGroup] = None
for key, value in state_dict.items():
specs[key] = (None, value.size())
if _is_nested_tensor(value):
assert (
len(value.local_shards()) == 1
), "Cannot handle ST with multiple shards"
assert isinstance(
value, ShardedTensor
), "Can only handle nested ShardedTensor"
shard = value.local_shards()[0]
specs[key] = (
shard.metadata.shard_offsets,
shard.metadata.shard_sizes,
)
dp_pg = shard.tensor._process_group # type: ignore[attr-defined]
return (
specs,
dp_pg,
)
class _ReaderWithOffset(DefaultLoadPlanner):
translation: Dict[MetadataIndex, MetadataIndex]
state_dict: STATE_DICT_TYPE
metadata: Metadata
def __init__(self, fqn_to_offset: Dict[str, Sequence[int]]) -> None:
super().__init__()
self.fqn_to_offset = fqn_to_offset
self.metadata = Metadata({})
self.state_dict = {}
self.translation = {}
def create_local_plan(self) -> LoadPlan:
requests = []
self.translation = {}
for fqn, obj in self.state_dict.items():
md = self.metadata.state_dict_metadata[fqn]
if not isinstance(obj, ShardedTensor):
requests += _create_read_items(fqn, md, obj)
continue
if fqn not in self.fqn_to_offset:
requests += _create_read_items(fqn, md, obj)
continue
offset = self.fqn_to_offset[fqn]
assert len(obj.local_shards()) == 1
original_shard = obj.local_shards()[0]
local_chunks = [
ChunkStorageMetadata(
offsets=torch.Size(
_element_wise_add(original_shard.metadata.shard_offsets, offset)
),
sizes=torch.Size(original_shard.metadata.shard_sizes),
)
]
reqs = create_read_items_for_chunk_list(
fqn, cast(TensorStorageMetadata, md), local_chunks
)
# TODO: The ReadItems will have a displaced MetadataIndex, fix it.
# TODO: we should change _create_sharded_read_items to have more ergonomic API
for ri in reqs:
assert ri.dest_index.offset is not None
original_offset = _element_wise_sub(ri.dest_index.offset, offset)
original_index = dataclasses.replace(
ri.dest_index, offset=torch.Size(original_offset)
)
self.translation[ri.dest_index] = original_index
requests += reqs
return LoadPlan(requests)
def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor:
return super().lookup_tensor(self.translation.get(index, index))
def load_sharded_optimizer_state_dict(
model_state_dict: STATE_DICT_TYPE,
optimizer_key: str,
storage_reader: StorageReader,
planner: Optional[LoadPlanner] = None,
) -> STATE_DICT_TYPE:
"""
Load a state_dict in conjunction with FSDP sharded optimizer state.
This is the current recommended way to checkpoint FSDP.
>>> # xdoctest: +SKIP
>>> import torch.distributed.checkpoint as dist_cp
>>> # Save
>>> model: torch.nn.Model
>>> optim_params = model.parameters()
>>> optim = torch.optim.SGD(optim_params, lr=0.01)
>>> # Save
>>> with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
>>> state_dict = {
>>> "optimizer": FSDP.optim_state_dict(model, optim),
>>> "model": model.state_dict()
>>> }
>>> dist_cp.save_state_dict(
>>> state_dict=optim_state,
>>> storage_writer=dist_cp.FileSystemWriter("checkpoint"),
>>> planner=dist_cp.DefaultSavePlanner(),
>>> )
>>>
>>> # Load
>>> with FSDP.state_dict_type(model_tp, StateDictType.SHARDED_STATE_DICT):
>>> model_state_dict = model_tp.state_dict()
>>> checkpoint = {
>>> "model": model_state_dict
>>> }
>>> dist_cp.load_state_dict(
>>> state_dict=checkpoint,
>>> storage_reader=dist_cp.FileSystemReader(checkpoint_file),
>>> planner=dist_cp.DefaultLoadPlanner(),
>>> )
>>> model.load_state_dict(checkpoint["model_state"])
>>>
>>> optim_state = dist_cp.load_sharded_optimizer_state_dict(
>>> model_state_dict,
>>> optimizer_key="optimizer",
>>> storage_reader=dist_cp.FileSystemReader("checkpoint"),
>>> )
>>>
>>> flattened_osd = FSDP.optim_state_dict_to_load(
>>> model, optim, optim_state["optimizer"]
>>> )
>>>
>>> optim.load_state_dict(flattened_osd)
"""
metadata = storage_reader.read_metadata()
layout_specs, dp_pg = _get_state_dict_2d_layout(model_state_dict)
dp_pg_device_type = dist.distributed_c10d._get_pg_default_device(dp_pg).type
device_module = _get_device_module(dp_pg_device_type)
if dp_pg is None:
placements = []
for i in range(dist.get_world_size()):
device_info = _normalize_device_info(
dp_pg_device_type, i % device_module.device_count()
)
placements.append(f"rank:{i}/{device_info}")
sharding_spec = ChunkShardingSpec(dim=0, placements=placements) # type: ignore[arg-type]
else:
sharding_spec = _create_colwise_spec(dp_pg)
# Create a state_dict for optimizer state
state_dict: STATE_DICT_TYPE = {}
fqn_to_offset: Dict[str, Sequence[int]] = {}
for key, value in metadata.state_dict_metadata.items():
key_path = metadata.planner_data[key]
if key_path[0] != optimizer_key:
continue
if isinstance(value, BytesStorageMetadata):
state_dict[key] = "<bytes_io>"
continue
# value: TensorStorageMetadata
if value.size.numel() == 1:
state_dict[key] = _alloc_tensor(
value.properties, value.size, dp_pg_device_type
)
elif dp_pg is None:
state_dict[key] = _create_chunk_sharded_tensor(
_alloc_tensor(value.properties, value.size, dp_pg_device_type),
rank=dist.get_rank(),
world_size=dist.get_world_size(),
num_devices_per_node=device_module.device_count(),
pg=_get_default_group(),
)
else:
spec_key = key_path[2]
alloc_size = layout_specs.get(spec_key, (None, value.size))[1]
properties = ShardTensorProperties(
dtype=value.properties.dtype,
layout=value.properties.layout,
requires_grad=value.properties.requires_grad,
memory_format=value.properties.memory_format,
pin_memory=value.properties.pin_memory,
)
st_md = sharding_spec.build_metadata(torch.Size(alloc_size), properties)
local_shards = []
current_rank = dist.get_rank(dp_pg)
for shard_md in st_md.shards_metadata:
if cast(_remote_device, shard_md.placement).rank() != current_rank:
continue
local_shards.append(
Shard(
tensor=_alloc_tensor(
value.properties, shard_md.shard_sizes, dp_pg_device_type
),
metadata=shard_md,
)
)
st = ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards, st_md, process_group=dp_pg
)
if spec_key in layout_specs and layout_specs[spec_key][0] is not None:
fqn_to_offset[key] = cast(Sequence[int], layout_specs[spec_key][0])
state_dict[key] = st
# Whether we unflatten before or after doesn't matter
load_state_dict(
state_dict=state_dict,
storage_reader=storage_reader,
# FIXME the type of planner is wrong in load_state_dict
planner=_ReaderWithOffset(fqn_to_offset) if dp_pg is not None else planner,
)
state_dict = unflatten_state_dict(state_dict, metadata.planner_data)
return state_dict