mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Moving DTensor to be in the public namespace, to formally add the documentation page that includes all the public APIs. This includes: * many path renames and path import fixes * a dedicated doc page without too much content yet (adding in the next PRs) * To preserve the BC for users still using the `torch.distributed._tensor`, I added a shim script to redirect old path calls to the new module The BC preserving is evidented by the fact that all DTensor tests are still working without changing the public imports. So it's safe to land the changes Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113 Approved by: https://github.com/XilunWu ghstack dependencies: #133305, #133306
512 lines
18 KiB
Python
512 lines
18 KiB
Python
# mypy: allow-untyped-defs
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates
|
|
|
|
import dataclasses
|
|
import io
|
|
import logging
|
|
import operator
|
|
from collections import ChainMap
|
|
from functools import reduce
|
|
from typing import Any, cast, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from torch.distributed._shard._utils import narrow_tensor_by_index
|
|
from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans
|
|
from torch.distributed.checkpoint._nested_dict import (
|
|
FLATTEN_MAPPING,
|
|
flatten_state_dict,
|
|
)
|
|
from torch.distributed.checkpoint._sharded_tensor_utils import _flatten_sharded_tensors
|
|
from torch.distributed.checkpoint._traverse import set_element
|
|
from torch.distributed.checkpoint.metadata import (
|
|
BytesStorageMetadata,
|
|
ChunkStorageMetadata,
|
|
Metadata,
|
|
MetadataIndex,
|
|
STATE_DICT_TYPE,
|
|
STORAGE_TYPES,
|
|
StorageMeta,
|
|
TensorStorageMetadata,
|
|
)
|
|
from torch.distributed.checkpoint.planner import (
|
|
LoadPlan,
|
|
LoadPlanner,
|
|
ReadItem,
|
|
SavePlan,
|
|
SavePlanner,
|
|
WriteItem,
|
|
WriteItemType,
|
|
)
|
|
from torch.distributed.checkpoint.planner_helpers import (
|
|
_create_default_metadata_only_plan,
|
|
_create_read_items,
|
|
_create_write_items,
|
|
_init_state_dict,
|
|
)
|
|
from torch.distributed.checkpoint.utils import find_state_dict_object
|
|
from torch.distributed.tensor import DTensor
|
|
|
|
|
|
logger: logging.Logger = logging.getLogger(__name__)
|
|
|
|
|
|
__all__ = [
|
|
"DefaultSavePlanner",
|
|
"DefaultLoadPlanner",
|
|
"create_default_local_load_plan",
|
|
"create_default_global_load_plan",
|
|
"create_default_local_save_plan",
|
|
"create_default_global_save_plan",
|
|
]
|
|
|
|
|
|
# TODO: Update docstrings for default_planner.py
|
|
class DefaultSavePlanner(SavePlanner):
|
|
mappings: FLATTEN_MAPPING
|
|
|
|
def __init__(
|
|
self,
|
|
flatten_state_dict: bool = True,
|
|
flatten_sharded_tensors: bool = True,
|
|
dedup_replicated_tensors: Optional[bool] = None,
|
|
dedup_save_to_lowest_rank: bool = False,
|
|
) -> None:
|
|
self.flatten_state_dict = flatten_state_dict
|
|
self.flatten_sharded_tensors = flatten_sharded_tensors
|
|
self.mappings = {}
|
|
self.dedup_save_to_lowest_rank = dedup_save_to_lowest_rank
|
|
if dedup_replicated_tensors is not None:
|
|
logger.warning(
|
|
"DefaultSavePlanner's `dedup_replicated_tensors` argument is being "
|
|
"deprecated, and no longer has any effect. Please remove this argument "
|
|
"from your call."
|
|
)
|
|
|
|
def set_up_planner(
|
|
self,
|
|
state_dict: STATE_DICT_TYPE,
|
|
storage_meta: Optional[StorageMeta] = None,
|
|
is_coordinator: bool = False,
|
|
) -> None:
|
|
if self.flatten_state_dict:
|
|
state_dict, self.mappings = flatten_state_dict(state_dict)
|
|
if self.flatten_sharded_tensors:
|
|
state_dict = _flatten_sharded_tensors(state_dict)
|
|
self.state_dict = state_dict
|
|
self.is_coordinator = is_coordinator
|
|
|
|
def create_local_plan(self) -> SavePlan:
|
|
plan = create_default_local_save_plan(self.state_dict, self.is_coordinator)
|
|
if self.flatten_state_dict:
|
|
plan = dataclasses.replace(plan, planner_data=self.mappings)
|
|
self.plan = plan
|
|
|
|
return self.plan
|
|
|
|
def create_global_plan(
|
|
self, all_plans: List[SavePlan]
|
|
) -> Tuple[List[SavePlan], Metadata]:
|
|
all_plans = dedup_save_plans(all_plans, self.dedup_save_to_lowest_rank)
|
|
|
|
global_plan, metadata = create_default_global_save_plan(all_plans)
|
|
|
|
if self.flatten_state_dict:
|
|
# | does not work for Python 3.8 or older version.
|
|
# merged_mappings = reduce(
|
|
# lambda x, y: x | y, (p.planner_data for p in global_plan)
|
|
# )
|
|
planner_data_dict = [p.planner_data for p in global_plan]
|
|
merged_mappings = dict(ChainMap(*planner_data_dict))
|
|
metadata = dataclasses.replace(metadata, planner_data=merged_mappings)
|
|
|
|
if not _validate_global_plan(global_plan, metadata):
|
|
raise ValueError("Failed to validate global plan")
|
|
|
|
self.global_plan = global_plan
|
|
self.metadata = metadata
|
|
|
|
return self.global_plan, self.metadata
|
|
|
|
def finish_plan(self, new_plan: SavePlan) -> SavePlan:
|
|
self.plan = new_plan
|
|
return new_plan
|
|
|
|
def resolve_data(self, write_item: WriteItem) -> Union[torch.Tensor, io.BytesIO]:
|
|
object = self.lookup_object(write_item.index)
|
|
return self.transform_object(write_item, object)
|
|
|
|
def lookup_object(self, index: MetadataIndex) -> Any:
|
|
"""Extension from the planner interface to make it easy to extend the default planner."""
|
|
return find_state_dict_object(self.state_dict, index)
|
|
|
|
def transform_object(self, write_item: WriteItem, object: Any):
|
|
"""Extension from the planner interface to make it easy to extend the default planner."""
|
|
if write_item.type == WriteItemType.BYTE_IO:
|
|
bytes = io.BytesIO()
|
|
torch.save(object, bytes)
|
|
object = bytes
|
|
return object
|
|
|
|
|
|
class DefaultLoadPlanner(LoadPlanner):
|
|
"""
|
|
DefaultLoadPlanner that adds multiple features on top of LoadPlanner.
|
|
|
|
In particular it adds the following:
|
|
|
|
flatten_state_dict: Handle state_dict with nested dicts
|
|
flatten_sharded_tensors: For FSDP in 2D parallel mode
|
|
allow_partial_load: If False, will raise a runtime error if a key is present in state_dict, but not in the checkpoint.
|
|
"""
|
|
|
|
original_state_dict: STATE_DICT_TYPE
|
|
mappings: FLATTEN_MAPPING
|
|
|
|
def __init__(
|
|
self,
|
|
flatten_state_dict: bool = True,
|
|
flatten_sharded_tensors: bool = True,
|
|
allow_partial_load: bool = False,
|
|
) -> None:
|
|
self.flatten_state_dict = flatten_state_dict
|
|
self.flatten_sharded_tensors = flatten_sharded_tensors
|
|
self.original_state_dict = {}
|
|
self.mappings = {}
|
|
self.allow_partial_load = allow_partial_load
|
|
|
|
def set_up_planner(
|
|
self,
|
|
state_dict: STATE_DICT_TYPE,
|
|
metadata: Optional[Metadata] = None,
|
|
is_coordinator: bool = False,
|
|
) -> None:
|
|
_init_state_dict(state_dict)
|
|
self.original_state_dict = state_dict
|
|
|
|
if self.flatten_sharded_tensors:
|
|
state_dict = _flatten_sharded_tensors(state_dict)
|
|
|
|
if self.flatten_state_dict:
|
|
state_dict, self.mappings = flatten_state_dict(state_dict)
|
|
|
|
self.state_dict = state_dict
|
|
self.metadata = metadata
|
|
self.is_coordinator = is_coordinator
|
|
|
|
def create_local_plan(self) -> LoadPlan:
|
|
assert self.metadata is not None
|
|
return create_default_local_load_plan(
|
|
self.state_dict, self.metadata, not self.allow_partial_load
|
|
)
|
|
|
|
def create_global_plan(self, global_plan: List[LoadPlan]) -> List[LoadPlan]:
|
|
return create_default_global_load_plan(global_plan)
|
|
|
|
def finish_plan(self, new_plan: LoadPlan) -> LoadPlan:
|
|
return new_plan
|
|
|
|
def load_bytes(self, read_item: ReadItem, value: io.BytesIO) -> None:
|
|
if self.flatten_state_dict:
|
|
set_element(
|
|
self.original_state_dict,
|
|
self.mappings[read_item.dest_index.fqn],
|
|
torch.load(value, weights_only=False),
|
|
)
|
|
else:
|
|
self.state_dict[read_item.dest_index.fqn] = torch.load(
|
|
value, weights_only=False
|
|
)
|
|
|
|
def resolve_tensor(self, read_item: ReadItem):
|
|
tensor = self.lookup_tensor(read_item.dest_index)
|
|
return self.transform_tensor(read_item, tensor)
|
|
|
|
def commit_tensor(self, read_item: ReadItem, tensor: torch.Tensor) -> None:
|
|
pass
|
|
|
|
def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor:
|
|
"""Extension from the planner interface to make it easy to extend the default planner."""
|
|
return find_state_dict_object(self.state_dict, index)
|
|
|
|
def transform_tensor(self, read_item: ReadItem, tensor: torch.Tensor):
|
|
"""Extension from the planner interface to make it easy to extend the default planner."""
|
|
return narrow_tensor_by_index(tensor, read_item.dest_offsets, read_item.lengths)
|
|
|
|
|
|
class _EmptyStateDictLoadPlanner(DefaultLoadPlanner):
|
|
"""
|
|
Extension of DefaultLoadPlanner, which rebuilds state_dict from the saved metadata.
|
|
Useful for loading in state_dict without first initializing a model, such as
|
|
when converting a DCP checkpoint into a Torch save file.
|
|
|
|
. N.B. `state_dict` must be an empty dictionary when used with this LoadPlanner
|
|
|
|
.. warning::
|
|
Because the entire state dict is initialized, It's recommended to only utilize
|
|
this LoadPlanner on a single rank or process to avoid OOM.
|
|
|
|
"""
|
|
|
|
def __init__(self, keys=None, *args, **kwargs):
|
|
self.keys = keys
|
|
super().__init__(*args, **kwargs)
|
|
|
|
def _should_include_key(self, key: str, metadata: Metadata) -> bool:
|
|
if self.keys is None:
|
|
return True
|
|
|
|
if key in self.keys:
|
|
True
|
|
|
|
unflattened_keys: List[str] = []
|
|
planner_data = metadata.planner_data.get(key)
|
|
for unflattened_key in planner_data:
|
|
if unflattened_keys:
|
|
unflattened_keys.append(
|
|
".".join([unflattened_keys[-1], str(unflattened_key)])
|
|
)
|
|
|
|
else:
|
|
unflattened_keys.append(unflattened_key)
|
|
|
|
if any(unflattened_key in self.keys for unflattened_key in unflattened_keys):
|
|
return True
|
|
|
|
return False
|
|
|
|
def set_up_planner(
|
|
self,
|
|
state_dict: STATE_DICT_TYPE,
|
|
metadata: Optional[Metadata] = None,
|
|
is_coordinator: bool = False,
|
|
) -> None:
|
|
assert not state_dict
|
|
assert metadata is not None
|
|
|
|
# rebuild the state dict from the metadata
|
|
for k, v in metadata.state_dict_metadata.items():
|
|
if not self._should_include_key(k, metadata):
|
|
continue
|
|
|
|
if isinstance(v, TensorStorageMetadata):
|
|
v = torch.empty(v.size, dtype=v.properties.dtype) # type: ignore[assignment]
|
|
if k in metadata.planner_data:
|
|
set_element(state_dict, metadata.planner_data[k], v)
|
|
else:
|
|
state_dict[k] = v
|
|
|
|
super().set_up_planner(state_dict, metadata, is_coordinator)
|
|
|
|
|
|
def create_default_local_load_plan(
|
|
state_dict: Dict[str, Any], metadata: Metadata, strict: bool = True
|
|
) -> LoadPlan:
|
|
requests = []
|
|
"""
|
|
Create the ``LoadPlan`` used by DefaultLoadPlanner.
|
|
|
|
It produces one read item per value in ``state_dict`` using the metadata in ``metadata``.
|
|
|
|
The default behavior is to match key exactly between state_dict and metadata.
|
|
It handles resharding by issuing multiple read requests against storage in order to match
|
|
load requirements.
|
|
"""
|
|
|
|
for fqn, obj in state_dict.items():
|
|
# ignore state_dict keys which do not exist in `state_dict` if strict=False
|
|
if fqn not in metadata.state_dict_metadata:
|
|
if strict:
|
|
raise RuntimeError(f"Missing key in checkpoint state_dict: {fqn}.")
|
|
else:
|
|
continue
|
|
|
|
md = metadata.state_dict_metadata[fqn]
|
|
# Since DTensor supports submesh, adding extra check to ensure _create_read_items()
|
|
# gets called only when the current rank is part of the mesh for the corresponding DTensor.
|
|
if isinstance(obj, DTensor):
|
|
if obj.device_mesh.get_coordinate() is not None:
|
|
requests += _create_read_items(fqn, md, obj)
|
|
else:
|
|
requests += _create_read_items(fqn, md, obj)
|
|
|
|
return LoadPlan(requests)
|
|
|
|
|
|
def create_default_global_load_plan(
|
|
all_plans: List[LoadPlan],
|
|
) -> List[LoadPlan]:
|
|
"""
|
|
Create global load plan used by DefaultLoadPlanner.
|
|
|
|
The default load behavior involved no global coordination and this function
|
|
currently doesn't change the local plans.
|
|
"""
|
|
return all_plans
|
|
|
|
|
|
def create_default_local_save_plan(
|
|
state_dict: Dict[str, Any], is_coordinator: bool
|
|
) -> SavePlan:
|
|
"""
|
|
Create the ``SavePlan`` used by DefaultSavePlanner.
|
|
|
|
On non-coordinator ranks, this function ignores tensors and non-tensor objects,
|
|
only producing writes for ShardedTensor objects.
|
|
|
|
On the coordinator rank, produce writes for all values.
|
|
"""
|
|
requests = []
|
|
for fqn, obj in state_dict.items():
|
|
# Since DTensor supports submesh, adding extra check to ensure _create_write_items()
|
|
# gets called only when the current rank is part of the mesh for the corresponding DTensor.
|
|
if isinstance(obj, DTensor):
|
|
if obj.device_mesh.get_coordinate() is not None:
|
|
requests += _create_write_items(fqn, obj)
|
|
else:
|
|
# For the plain tensor and non-tensor values, add the request for all
|
|
# the ranks. Coordinator will decides whether to deduplicate the
|
|
# values based on the keys.
|
|
requests += _create_write_items(fqn, obj)
|
|
|
|
return SavePlan(requests)
|
|
|
|
|
|
def create_default_global_save_plan(
|
|
all_plans: List[SavePlan],
|
|
rewrite_index_hints: bool = True,
|
|
) -> Tuple[List[SavePlan], Metadata]:
|
|
"""
|
|
Create the global plan and metadata used by DefaultSavePlanner.
|
|
|
|
Metadata is produced by concatenating the metadata of all ``WriteItem`` from the supplied plans.
|
|
|
|
The only global planning change is to update index hints in all ``MetadataIndex`` objects if
|
|
``rewrite_index_hints`` is True.
|
|
"""
|
|
md: Dict[str, STORAGE_TYPES] = {}
|
|
new_plans = []
|
|
for plan in all_plans:
|
|
new_items = []
|
|
for item in plan.items:
|
|
if not item.type == WriteItemType.SHARD:
|
|
assert item.index.fqn not in md
|
|
|
|
if item.type == WriteItemType.BYTE_IO:
|
|
md[item.index.fqn] = BytesStorageMetadata()
|
|
new_items.append(item)
|
|
else:
|
|
assert item.tensor_data is not None
|
|
tensor_md = cast(
|
|
TensorStorageMetadata,
|
|
md.setdefault(
|
|
item.index.fqn,
|
|
TensorStorageMetadata(
|
|
properties=item.tensor_data.properties,
|
|
size=item.tensor_data.size,
|
|
chunks=[],
|
|
),
|
|
),
|
|
)
|
|
new_item = item
|
|
if rewrite_index_hints:
|
|
new_index = dataclasses.replace(
|
|
item.index, index=len(tensor_md.chunks)
|
|
)
|
|
new_item = dataclasses.replace(item, index=new_index)
|
|
new_items.append(new_item)
|
|
|
|
assert (
|
|
item.tensor_data.chunk is not None
|
|
), f"""
|
|
Cannot create MD for tensor without bounds.
|
|
FQN: {item.index.fqn}
|
|
"""
|
|
tensor_md.chunks.append(item.tensor_data.chunk)
|
|
new_plans.append(dataclasses.replace(plan, items=new_items))
|
|
return (new_plans, Metadata(md))
|
|
|
|
|
|
def _create_default_local_metadata(state_dict: STATE_DICT_TYPE) -> Metadata:
|
|
"""Return the ``Metadata`` if DefaultSavePlanner was used to checkpoint ``state_dict``."""
|
|
plan = _create_default_metadata_only_plan(state_dict)
|
|
_, md = create_default_global_save_plan([plan])
|
|
return md
|
|
|
|
|
|
def _check_box_overlap(box0: ChunkStorageMetadata, box1: ChunkStorageMetadata) -> bool:
|
|
"""Check if two boxes overlap. Tuples are (offset, lengths)."""
|
|
# For each dim of each shard, check if one shard resides on the other
|
|
# end of second shard with respect to that dim. As an example for a 2D
|
|
# shard, we would check if one shard is above or on the left of the
|
|
# other shard.
|
|
ndims = len(box0.offsets)
|
|
for i in range(ndims):
|
|
if box0.offsets[i] >= box1.offsets[i] + box1.sizes[i]:
|
|
return False
|
|
if box1.offsets[i] >= box0.offsets[i] + box0.sizes[i]:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def _check_box_bounds(
|
|
outer_box_size: torch.Size, inner_box: ChunkStorageMetadata
|
|
) -> bool:
|
|
for i in range(len(outer_box_size)):
|
|
if inner_box.offsets[i] < 0:
|
|
return False
|
|
if inner_box.sizes[i] < 0:
|
|
return False
|
|
if inner_box.offsets[i] + inner_box.sizes[i] > outer_box_size[i]:
|
|
return False
|
|
|
|
return True
|
|
|
|
|
|
def _validate_global_plan(global_plan: List[SavePlan], metadata: Metadata) -> bool:
|
|
all_good = True
|
|
for key, value in metadata.state_dict_metadata.items():
|
|
if isinstance(value, BytesStorageMetadata):
|
|
continue
|
|
if len(value.size) == 0:
|
|
continue
|
|
chunks_volume = 0
|
|
for chunk_idx, chunk0 in enumerate(value.chunks):
|
|
# Compute the volume
|
|
if not _check_box_bounds(value.size, chunk0):
|
|
logger.warning(
|
|
"""
|
|
key:%s has out of bounds chunk:
|
|
tensor-size:%s chunk: %s
|
|
""",
|
|
key,
|
|
value.size,
|
|
chunk0,
|
|
)
|
|
all_good = False
|
|
chunks_volume += reduce(operator.mul, chunk0.sizes, 1)
|
|
|
|
# Check for overlap
|
|
for chunk1 in value.chunks[chunk_idx + 1 :]:
|
|
if _check_box_overlap(chunk0, chunk1):
|
|
logger.warning(
|
|
"key:%s has overlapping chunks: %s %s", key, chunk0, chunk1
|
|
)
|
|
all_good = False
|
|
|
|
# Check whether combined chunk cover the whole tensor
|
|
tensor_volume = reduce(operator.mul, value.size, 1)
|
|
if chunks_volume != tensor_volume:
|
|
logger.warning(
|
|
"""
|
|
key:%s invalid fill tensor-volume:
|
|
%s chunks-volume: %s
|
|
""",
|
|
key,
|
|
tensor_volume,
|
|
chunks_volume,
|
|
)
|
|
all_good = False
|
|
|
|
return all_good
|