pytorch/caffe2/python/core_test.py
Gary Zheng 4a58f35bef [caffe2] Fix duplicate name bug in Net.AddExternalInput (#47530)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47530

`Net.AddExternalInput` should raise if there are duplicate names. The previous code would only raise if the addition of duplicates was in separate calls, but not if it was in the same call.

Test Plan:
Added two new regression tests

```
    ✓ Pass: caffe2/caffe2/python:core_test - testSetInputRecordWithBlobs (caffe2.caffe2.python.core_test.TestExternalInputs) (9.622)
    ✓ Pass: caffe2/caffe2/python:core_test - testAddExternalInputShouldRaiseIfDuplicate (caffe2.caffe2.python.core_test.TestExternalInputs) (9.639)
    ✓ Pass: caffe2/caffe2/python:core_test - testSetInputRecordWithoutBlobs (caffe2.caffe2.python.core_test.TestExternalInputs) (9.883)
    ✓ Pass: caffe2/caffe2/python:core_test - testAddExternalInputShouldRaiseIfDuplicateInSameCall (caffe2.caffe2.python.core_test.TestExternalInputs) (10.153)
```

Test trained 2 models. No issues

f230755456
f230754926

Reviewed By: dzhulgakov

Differential Revision: D24763586

fbshipit-source-id: c87088441d76f7198f8b07508b2607aec13521ed
2020-11-09 08:30:58 -08:00

1243 lines
46 KiB
Python

from inspect import currentframe, getframeinfo
import unittest
import numpy as np
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace, schema, test_util
from caffe2.python.task import Node, Task
class TestScopes(test_util.TestCase):
def testBlobReferenceIsIndependentFromNameScope(self):
blob_v = core.BlobReference("v")
with core.NameScope("foo"):
blob_w = core.BlobReference("w")
with core.NameScope("bar"):
blob_x = core.BlobReference("x")
self.assertEqual(str(blob_v), "v")
self.assertEqual(str(blob_w), "w")
self.assertEqual(str(blob_x), "x")
def testNameScopeWithOp(self):
global_x = core.BlobReference("x")
global_y = core.BlobReference("y")
with core.NameScope("foo"):
# Raw strings should have namescope prepended.
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
# BlobReferences should not.
op = core.CreateOperator("Relu", global_x, global_y)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
def testNameScopeWithReset(self):
with core.NameScope("foo"):
# foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar"):
# foo/bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
with core.NameScope("bar", reset=True):
# bar/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "bar/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "bar/y")
# Back to foo/
op = core.CreateOperator("Relu", "x", "y")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
def testDeviceScope(self):
# No device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
# explicitly setting a device
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
op = core.CreateOperator("Relu", "x", "y", device_option=device_option)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
with core.DeviceScope(device_option):
# from device scope
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
# from an overridden device option
override_device = caffe2_pb2.DeviceOption()
override_device.device_type = caffe2_pb2.CPU
op = core.CreateOperator(
"Relu", "x", "y", device_option=override_device)
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, caffe2_pb2.CPU)
# back from normal: no device
op = core.CreateOperator("Relu", "x", "y")
self.assertFalse(op.HasField('device_option'))
device_option = caffe2_pb2.DeviceOption()
def testNameAndDeviceScopeTogether(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
with core.DeviceScope(device_option):
with core.NameScope("foo"):
op = core.CreateOperator("Relu", "x", "y")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "foo/x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "foo/y")
class TestCloneNet(test_util.TestCase):
def testPartialClone(self):
params = core.Net('params')
p1 = params.ConstantFill([], ['p1'])
workspace.CreateNet(params)
workspace.RunNetOnce(params)
n = core.Net('original')
a1 = n.AddExternalInput('a1')
a2 = n.AddExternalInput('a2')
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
c1 = n.Sum([b1, p1], ['c1'])
c2 = n.Sum([b2], ['c2'])
d = n.Sum([c1, c2], ['d'])
# test that gradient ops are ignored when partial-cloning
n.AddGradientOperators([d])
# test some in-place ops
k = n.Sum([p1], ['k'])
e = n.Sum([d], ['e'])
e = n.Sum([e, k], [e])
e = n.Sum([e], [e])
f = n.Sum(e, ['f'])
def net_assert(net, num_ops, inputs, outputs, internals):
self.assertEqual(len(net.Proto().op), num_ops)
self.assertEqual(set(net.Proto().external_input), inputs)
self.assertEqual(set(net.Proto().external_output), outputs)
all_blobs = set(net.Proto().external_input)
all_blobs |= set(net.Proto().external_output)
for op in net.Proto().op:
all_blobs |= set(op.input) | set(op.output)
self.assertEqual(all_blobs, inputs | outputs | internals)
# create net to make sure its valid
for input in inputs:
workspace.FeedBlob(input, np.array([]))
workspace.CreateNet(net)
n2, (d22, ) = n.ClonePartial('f1', {a1: 'a11', a2: 'a22'}, [d])
net_assert(
n2, 4, {'p1', 'a11', 'a22'}, {'f1/d'},
{'f1/b1', 'f1/b2', 'f1/c1', 'f1/c2', 'p1'})
self.assertTrue(isinstance(d22, core.BlobReference))
self.assertEqual(d22.Net(), n2)
self.assertEqual(str(d22), 'f1/d')
n3, (d22, ) = n.ClonePartial('f2', [b1, b2], [d])
net_assert(
n3, 3, {'p1', 'b1', 'b2'}, {'f2/d'}, {'f2/c1', 'f2/c2', 'p1'})
self.assertEqual(str(d22), 'f2/d')
n4, (c22, ) = n.ClonePartial('f3', [b1], [c1])
net_assert(n4, 1, {'p1', 'b1'}, {'f3/c1'}, {'p1'})
self.assertEqual(str(c22), 'f3/c1')
n5, (c11, c22) = n.ClonePartial('f4', [b1, b2], [c1, c2])
net_assert(n5, 2, {'p1', 'b1', 'b2'}, {'f4/c1', 'f4/c2'}, {'p1'})
self.assertEqual(str(c11), 'f4/c1')
self.assertEqual(str(c22), 'f4/c2')
with self.assertRaises(AssertionError):
n.ClonePartial('f4', [a1, a2, c2], [d])
n6, (e22, ) = n.ClonePartial('f5', [d], [e])
net_assert(n6, 4, {'p1', 'd'}, {'f5/e'}, {'f5/k', 'p1'})
self.assertEqual(str(e22), 'f5/e')
n8, (e22, f22) = n.ClonePartial('f7', [d], [e, f])
net_assert(n8, 5, {'p1', 'd'}, {'f7/e', 'f7/f'}, {'p1', 'f7/k'})
self.assertEqual(str(e22), 'f7/e')
self.assertEqual(str(f22), 'f7/f')
params._CheckLookupTables()
n._CheckLookupTables()
def test_mask_clone_update_external_list(self):
n = core.Net('original')
a1 = n.AddExternalInput('a1')
a2 = n.AddExternalInput('a2')
p1 = 'p1'
b1, b2 = n.Concat([a1, a2], ['b1', 'b2'], axis=0)
c1 = n.Sum([b1, p1], ['c1'])
c2 = n.Sum([b2], ['c2'])
n.Sum([c1, c2], ['d'])
new_net = n.Clone(
"new", op_id_mask=[0, 1], keep_schema=True, update_external_list=True)
self.assertEqual(
sorted(map(str, new_net.external_inputs)),
["a1", "a2", "p1"],
"external input not matched",
)
self.assertEqual(
sorted(map(str, new_net.external_outputs)),
["b2", "c1"],
"external output not matched",
)
new_net = n.Clone(
"new2", op_id_mask=[2, 3], keep_schema=True, update_external_list=True)
self.assertEqual(
sorted(map(str, new_net.external_inputs)),
["b2", "c1"],
"external input not matched",
)
self.assertEqual(
sorted(map(str, new_net.external_outputs)),
["d"],
"external output not matched",
)
def test_control_op_remap(self):
# Subnets under If/AsyncIf operators should get name remapping when cloned
n = core.Net("original")
then_net = core.Net("a")
then_net.FC(["inputA"], "fc_a")
else_net = core.Net("b")
else_net.FC(["inputB"], "fc_b")
n.If(
inputs=[],
outputs=[],
then_net=then_net.Proto(),
else_net=else_net.Proto(),
)
copied = n.Clone("copied", blob_remap={"inputA": "inputX"})
if_op = copied._net.op[0]
self.assertEqual(if_op.arg[0].n.op[0].input, ["inputX"])
self.assertEqual(if_op.arg[1].n.op[0].input, ["inputB"])
class TestExternalInputs(test_util.TestCase):
def testAddExternalInputShouldRaiseIfDuplicate(self):
net = core.Net("test")
net.AddExternalInput(
schema.Struct(("x", schema.Scalar(np.float))),
)
with self.assertRaises(AssertionError):
net.AddExternalInput(
schema.Struct(("x", schema.Scalar(np.float))),
)
def testAddExternalInputShouldRaiseIfDuplicateInSameCall(self):
net = core.Net("test")
with self.assertRaises(AssertionError):
net.AddExternalInput(
schema.Struct(("x", schema.Scalar(np.float))),
schema.Struct(("x", schema.Scalar(np.float))),
)
def testSetInputRecordWithBlobs(self):
net = core.Net("test")
record = schema.NewRecord(net, schema.Struct(
("x", schema.Scalar(np.float)),
))
input_record = net.set_input_record(record)
self.assertTrue(net.BlobIsDefined(input_record.x()))
self.assertIn(input_record.x(), net.external_inputs)
def testSetInputRecordWithoutBlobs(self):
net = core.Net("test")
record = schema.Struct(("x", schema.Scalar(np.float)))
input_record = net.set_input_record(record)
self.assertTrue(net.BlobIsDefined(input_record.x()))
self.assertIn(input_record.x(), net.external_inputs)
class TestCreateOperator(test_util.TestCase):
def testCreate(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
op = core.CreateOperator(
"Ludicrous", "x", "y", name="ludicrous",
control_input="z", device_option=device_option,
engine="WARP", arg1=1, arg2="2", arg3=[1, 2, 3])
self.assertEqual(op.type, "Ludicrous")
self.assertEqual(op.name, "ludicrous")
self.assertEqual(op.engine, "WARP")
self.assertEqual(len(op.input), 1)
self.assertEqual(op.input[0], "x")
self.assertEqual(len(op.output), 1)
self.assertEqual(op.output[0], "y")
self.assertEqual(len(op.control_input), 1)
self.assertEqual(op.control_input[0], "z")
self.assertTrue(op.HasField('device_option'))
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertTrue(len(op.arg), 3)
# can't guarantee ordering of kwargs, so generate a set of args
# to test with
arg_map = {}
for arg in op.arg:
arg_map[arg.name] = arg
# Check all elements exist that should
self.assertEqual("arg1" in arg_map, True)
self.assertEqual("arg2" in arg_map, True)
self.assertEqual("arg3" in arg_map, True)
# Now test that all args were initialized correctly
self.assertEqual(arg_map["arg1"].i, 1)
self.assertEqual(arg_map["arg2"].s, b"2")
self.assertEqual(list(arg_map["arg3"].ints), [1, 2, 3])
class TestAutoNaming(test_util.TestCase):
def assertOperatorListEqual(self, operatorDefList1, operatorDefList2):
for op in operatorDefList1:
op.debug_info = ""
for op in operatorDefList2:
op.debug_info = ""
self.assertEqual(operatorDefList1, operatorDefList2)
"""
Test that operators are named with different names, and that automatically
named blob names don't clash intra or inter networks.
"""
def test_next_blob(self):
def create_net():
net = core.Net('net')
with core.NameScope('foo'):
net.Add(['a', 'b'], net.NextScopedBlob('ab'))
net.Add(['c', 'd'], net.NextBlob('cd'))
return net
net_a = create_net()
net_b = create_net()
# created net proto is predicatable.
self.assertOperatorListEqual(net_a.Proto().op,
net_b.Proto().op)
self.assertEqual(net_a.Proto().op[0].output[0], 'foo/ab')
self.assertEqual(net_a.Proto().op[1].output[0], 'cd')
net_c = core.Net('net')
# different calls return different blob names
self.assertNotEqual(str(net_c.NextBlob('b')), str(net_c.NextBlob('b')))
def test_auto_naming(self):
a = core.Net('net')
b = core.Net('net')
self.assertNotEqual(a.Proto().name, b.Proto().name)
a_in1 = a.AddExternalInput('a')
b_in1 = b.AddExternalInput('b')
all_outputs_single = []
all_outputs_list = []
def add_ops():
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(a.Sum([a_in1, a_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_single.append(b.Sum([b_in1, b_in1]))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(a.Sum([a_in1, a_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
all_outputs_list.append(b.Sum([b_in1, b_in1], outputs=2))
add_ops()
with core.NameScope('n1'):
add_ops()
# Force reset of lookup tables
a.Proto().name
with core.NameScope('n2'):
add_ops()
all_outputs = []
for s in all_outputs_single:
all_outputs.append(str(s))
for l in all_outputs_list:
for o in l:
all_outputs.append(str(o))
for i, o1 in enumerate(all_outputs):
for j, o2 in enumerate(all_outputs):
if i != j:
self.assertNotEqual(str(o1), str(o2))
a._CheckLookupTables()
b._CheckLookupTables()
class TestAppendNet(test_util.TestCase):
def test_external_inputs_merged_correctly(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netB.AppendNet(netA)
self.assertFalse("in1" in netB.external_inputs)
def test_external_inputs_merged_correctlyB(self):
netA = core.Net("A")
netA.Sum(["in1", "in2"], ["sum1"])
self.assertTrue("in1" in netA.external_inputs)
netB = core.Net("B")
netB.Sum(["in3", "in4"], ["in1"])
netA.AppendNet(netB) # note different order than in prev test
self.assertTrue("in1" in netA.external_inputs)
class TestExtractPredictorNet(test_util.TestCase):
@unittest.skipIf('ImageInput' not in workspace.RegisteredOperators(), "Needs OpenCV")
def test_extract_simple(self):
from caffe2.python import brew
from caffe2.python.model_helper import ModelHelper, ExtractPredictorNet
model = ModelHelper(name="test", arg_scope={'order': 'NCHW'})
[data, label] = brew.image_input(
model,
"reader", ["xx/data", "label"],
is_test=1,
)
cnv = brew.conv(model, data, 'cnv', 32, 32, 4)
a = brew.fc(model, cnv, 'a', 100, 200)
pred = brew.fc(model, a, 'pred', 200, 5)
brew.softmax(model, [pred, label], "softmax")
(predict_net, export_blobs) = ExtractPredictorNet(
net_proto=model.net.Proto(),
input_blobs=["xx/data"],
output_blobs=["pred"],
renames={"xx/data": "image"},
)
export_blobs = set(export_blobs)
ops = list(predict_net.Proto().op)
for op in ops:
self.assertFalse(op.type == "Softmax")
self.assertFalse("xx/data" in op.input)
# Note: image input should not be included
self.assertEquals(ops[0].type, "Conv")
self.assertEquals(ops[1].type, "FC")
self.assertEquals(ops[2].type, "FC")
self.assertEquals(len(ops), 3)
# test rename happened
self.assertEquals(ops[0].input[0], "image")
# Check export blobs
self.assertTrue("image" not in export_blobs)
self.assertTrue("xx/data" not in export_blobs)
self.assertEqual(set([str(p) for p in model.params]), export_blobs)
# Check external inputs/outputs
self.assertTrue("image" in predict_net.Proto().external_input)
self.assertEquals(set(["pred"]), set(predict_net.Proto().external_output))
self.assertEqual(
set(predict_net.Proto().external_input) -
set([str(p) for p in model.params]), set(["image"])
)
class TestOperatorTraceback(test_util.TestCase):
def op_name_check(self, net, cf, line, func):
net.PopulateProtoWithFileName()
filename = getframeinfo(cf).filename
self.assertEqual(net.Proto().op[0].name, '{}:{}:{}'.format(
filename, line, func))
def test_operator_constructor_traceback(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
with self.assertRaises(Exception):
workspace.CreateNet(net)
self.op_name_check(net, cf, line, func)
def test_operator_runtime_traceback(self):
net = core.Net("test")
a = net.AddExternalInput("a")
workspace.blobs[a] = np.array([1, 2, 3], dtype=np.float32)
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
with self.assertRaises(Exception):
workspace.RunNetOnce(net)
workspace.CreateNet(net)
with self.assertRaises(Exception):
workspace.RunNet(net)
self.op_name_check(net, cf, line, func)
def test_c_workspace_constructor(self):
net = core.Net("test")
a, b = net.AddExternalInput("a", "b")
net.Mul([a, b], "c"); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
ws = workspace.C.Workspace()
with self.assertRaises(Exception):
ws.run(net)
with self.assertRaises(Exception):
ws.create_net(net)
self.op_name_check(net, cf, line, func)
def test_c_workspace_runtime(self):
net = core.Net("test")
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
ws = workspace.C.Workspace()
ws.create_blob(str(a)).feed(np.array([1, 2, 3], dtype=np.float32))
ws.create_net(net)
with self.assertRaises(Exception):
ws.run(net)
self.op_name_check(net, cf, line, func)
def test_async_exception_handling(self):
net = core.Net("test")
net.Proto().type = 'dag' # this runs operators on background threads
a = net.AddExternalInput("a")
net.Split(a, ["b", "c"], axis=0); cf = currentframe(); line = cf.f_lineno
func = cf.f_code.co_name
workspace.FeedBlob(a, np.array([1, 2, 3], dtype=np.float32))
with self.assertRaises(Exception) as enforceNotMet:
workspace.RunNetOnce(net)
self.assertIn('enforce fail', str(enforceNotMet.exception))
self.op_name_check(net, cf, line, func)
class TestCreatePlan(test_util.TestCase):
def test_create_plan_from_proto_correctly(self):
from caffe2.python.net_builder import ops
with Node('trainer'), Task(name='my_task', num_instances=2) as task:
with ops.task_init():
globl = ops.Const(0)
with ops.task_instance_init():
local = ops.Const(0)
with ops.loop(100):
ops.Copy(globl, local)
with ops.task_instance_exit():
ops.Add([globl, local], [globl])
with ops.task_exit():
ops.Mul([globl, globl], [globl])
plan = core.Plan(task.get_step())
test_plan = core.Plan.create_from_proto(plan.Proto())
self.assertEqual(len(plan.Steps()), 1)
self.assertEqual(len(test_plan.Steps()), 1)
self.assertEqual(len(plan.Proto().network), 9)
self.assertEqual(len(test_plan.Proto().network), 9)
self.assertEqual(len(plan.Proto().execution_step), 1)
self.assertEqual(len(test_plan.Proto().execution_step), 1)
self.assertEqual(plan.Steps()[0].Name(), test_plan.Steps()[0].Name())
self.assertEqual(len(plan.Nets()), len(test_plan.Nets()))
for idx in range(0, len(plan.Nets())):
# When we create Net for test_plan, we will end up with new Net
# name with postfix.
net_1 = plan.Nets()[idx]
net_2 = test_plan.Nets()[idx]
trim_size = len(net_1.Name())
self.assertEqual(net_1.Name(), net_2.Name()[:trim_size])
class TestOpRegistryKey(test_util.TestCase):
def test_is_operator(self):
self.assertTrue(core.IsOperator('Relu'))
self.assertFalse(core.IsOperator('NOEXIST'))
def test_is_operator_with_engine(self):
self.assertTrue(core.IsOperatorWithEngine('Relu', 'DEFAULT'))
self.assertFalse(core.IsOperatorWithEngine('Relu', 'NOEXIST'))
class TestDeviceOption(test_util.TestCase):
def test_check_equal_node_name(self):
opt1 = core.DeviceOption(0)
opt2 = core.DeviceOption(0)
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2))
self.assertFalse(core.device_option_equal(opt1, opt2, ignore_node_name=False))
opt1.node_name = 'test'
self.assertTrue(core.device_option_equal(opt1, opt2, ignore_node_name=False))
def test_check_equal_default_value(self):
opt1 = caffe2_pb2.DeviceOption()
opt2 = caffe2_pb2.DeviceOption()
opt1.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.device_id = 5
# opt1 still is on CPU, so the options should be equal
self.assertTrue(core.device_option_equal(opt1, opt2))
opt2.device_type = 0
self.assertTrue(core.device_option_equal(opt1, opt2))
opt1.device_type = 1
self.assertFalse(core.device_option_equal(opt1, opt2))
class TestInferDeviceCpuOnly(test_util.TestCase):
def test_inject_copy(self):
'''
Test inject cross device copies - this is a no-op on CPU only devices.
'''
send_node = 'node:0'
recv_node = 'node:1'
# Using placeholder ops for send/recv. Placeholder ops are
# decorator/fake ops that don't have operator schema.
placeholder_send = 'Placeholder:Dummy:Send'
placeholder_recv = 'Placeholder:Dummy:Recv'
# init_net.
init_net = core.Net("init_net")
with core.DeviceScope(0, node_name=send_node):
init_net.XavierFill([], 'fc_w', shape=[10, 100])
init_net.ConstantFill([], 'fc_b', shape=[10, ])
# train_net.
train_net = core.Net("train_net")
train_net.Proto().external_input.extend(['fc_w', 'fc_b'])
with core.DeviceScope(0, node_name=send_node):
op = core.CreateOperator(
placeholder_send, ["fc_w", 'fc_b'], [],
dst_node=recv_node)
train_net.Proto().op.extend([op])
with core.DeviceScope(0, node_name=recv_node):
# Let's rename the recv blob i.e. fc_w -> fc_w_recv.
op = core.CreateOperator(
placeholder_recv, [], ['fc_w_recv', 'fc_b'],
src_node=send_node)
train_net.Proto().op.extend([op])
train_net.FC(["data", 'fc_w_recv', 'fc_b'], "fc1")
# Inject cross device copies.
init_net, x_dev_state = core.InjectCrossDeviceCopies(
init_net,
placeHolderOps=[placeholder_send, placeholder_recv])
train_net, x_dev_state = core.InjectCrossDeviceCopies(
train_net, x_dev_state,
placeHolderOps=[placeholder_send, placeholder_recv])
# Verify: No Copy operators should be injected since it is CPU only.
op = train_net.Proto().op[0]
self.assertEqual(op.type, placeholder_send)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[0], "fc_w")
self.assertEqual(op.input[1], "fc_b")
op = train_net.Proto().op[1]
self.assertEqual(op.type, placeholder_recv)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "fc_w_recv")
self.assertEqual(op.output[1], "fc_b")
op = train_net.Proto().op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[1], "fc_w_recv")
self.assertEqual(op.input[2], "fc_b")
@unittest.skipIf(not workspace.has_gpu_support, 'No GPU support')
class TestInferDevice(test_util.TestCase):
def setUp(self):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
self.gpu_option = device_option
self.cpu_option = caffe2_pb2.DeviceOption()
def _test_op(
self,
op_name,
in_option,
out_option,
op_option=None,
inputs=None,
outputs=None
):
op_option = self.gpu_option if not op_option else op_option
inputs = ["blob_1"] if not inputs else inputs
outputs = ["blob_2"] if not outputs else outputs
with core.DeviceScope(op_option):
op = core.CreateOperator(op_name, inputs, outputs)
input_dev, output_dev = core.InferOpBlobDevices(op)
if isinstance(in_option, list):
assert len(in_option) == len(input_dev), \
'Length of input device option should match' \
'{} vs. {}'.format(in_option, input_dev)
for in_dev, in_opt in zip(input_dev, in_option):
self.assertEqual(in_dev, in_opt)
else:
for in_dev in input_dev:
self.assertEqual(in_dev, in_option)
if isinstance(out_option, list):
assert len(out_option) == len(output_dev), \
'Length of output device option should match' \
'{} vs. {}'.format(out_option, output_dev)
for out_dev, out_opt in zip(output_dev, out_option):
self.assertEqual(out_dev, out_opt)
else:
for out_dev in output_dev:
self.assertEqual(out_dev, out_option)
def test_infer_device(self):
self._test_op(
"FC",
self.gpu_option,
self.gpu_option,
op_option=self.gpu_option,
inputs=["data", "fc_w", "fc_b"],
outputs=["fc_1"]
)
def test_infer_device_split_by_lengths(self):
self._test_op(
"SplitByLengths",
[self.gpu_option, self.cpu_option],
self.gpu_option,
op_option=self.gpu_option,
inputs=["data", "fc_w"],
outputs=["fc_1"]
)
def test_infer_device_adam(self):
in_options = [self.gpu_option] * 6
in_options[5] = self.cpu_option
out_options = [self.gpu_option] * 4
self._test_op(
"Adam",
in_options,
out_options,
op_option=self.gpu_option,
inputs=["param", "moment_1", "moment_2", "grad", "lr", "iter"],
outputs=["output_param", "output_moment_1", "output_moment_2",
"output_grad"]
)
def test_infer_device_cross_device(self):
self._test_op("CopyGPUToCPU", self.gpu_option, self.cpu_option)
self._test_op("CopyCPUToGPU", self.cpu_option, self.gpu_option)
self._test_op("CopyFromCPUInput", self.cpu_option, self.gpu_option)
self._test_op(
"CopyFromCPUInput",
self.cpu_option,
self.cpu_option,
op_option=self.cpu_option
)
def test_device_inference_function(self):
# ConcatOp.
op_option = self.gpu_option
with core.DeviceScope(op_option):
op = core.CreateOperator(
'Concat',
['X_{}'.format(i) for i in range(4)],
['concat_result', 'split_info'],
axis=1)
input_dev, output_dev = core.InferOpBlobDevices(op)
# 2nd output's type is CPU irrespective of Concat op's device option.
self.assertEqual(output_dev[1], self.cpu_option)
#SplitOp.
op_option = self.gpu_option
with core.DeviceScope(op_option):
op = core.CreateOperator(
'Split',
['input', 'split'],
['X_{}'.format(i) for i in range(4)],
axis=0)
input_dev, output_dev = core.InferOpBlobDevices(op)
# 2nd input's type is CPU irrespective of Split op's device option.
self.assertEqual(input_dev[1], self.cpu_option)
def test_inject_copy(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
with core.DeviceScope(device_option):
net.FC(["data", weight, bias], "fc1")
_, blob_to_device = core.InjectCrossDeviceCopies(init_net)
new_net, blob_to_device = core.InjectCrossDeviceCopies(
net, blob_to_device
)
op = new_net._net.op[-1]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data_gpu_1")
self.assertEqual(op.input[1], "fc_w_gpu_1")
self.assertEqual(op.input[2], "fc_b_gpu_1")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(new_net._net.op[-2].type, "CopyCPUToGPU")
self.assertEqual(new_net._net.op[0].type, "CopyCPUToGPU")
self.assertNotEqual(blob_to_device["fc_w"], device_option)
def test_cross_nets(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
const = init_net.ConstantFill([], 'const', shape=[], value=1.)
with core.DeviceScope(device_option):
const = init_net.Add([const, const], [const])
fc_out = net.FC(["data", weight, bias], "fc1")
net.Add([fc_out, const], [fc_out])
data_remap = {'data': device_option}
nets, _ = core.InjectDeviceCopiesAmongNets(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "fc_w_gpu_1")
op = nets[1]._net.op[1]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "fc_b_gpu_1")
op = nets[1]._net.op[2]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w_gpu_1")
self.assertEqual(op.input[2], "fc_b_gpu_1")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
op = nets[1]._net.op[3]
self.assertEqual(op.type, "Add")
self.assertEqual(op.input[0], "fc1")
self.assertEqual(op.input[1], "const_gpu_1")
# check that moved blob is in input to the new net
for c in ["data", "fc_w", "fc_b", "const_gpu_1"]:
self.assertTrue(c in nets[1]._net.external_input)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "fc_w"
output: "fc_w_gpu_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "fc_b"
output: "fc_b_gpu_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "data"
input: "fc_w_gpu_1"
input: "fc_b_gpu_1"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "fc1"
input: "const_gpu_1"
output: "fc1"
name: ""
type: "Add"
device_option {
device_type: 1
device_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
external_input: "const"
external_input: "const_gpu_1"
"""
def test_cross_nets_no_change(self):
net = core.Net("test")
init_net = core.Net("init")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
with core.DeviceScope(device_option):
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
net.FC(["data", weight, bias], "fc1")
data_remap = {'data': device_option}
nets = core.InjectDeviceCopiesAmongNetsWithoutB2D(
[init_net, net], blob_to_device_init=data_remap
)
op = nets[1]._net.op[0]
self.assertEqual(op.type, "FC")
self.assertEqual(op.input[0], "data")
self.assertEqual(op.input[1], "fc_w")
self.assertEqual(op.input[2], "fc_b")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
input: "fc_w"
input: "fc_b"
output: "fc1"
name: ""
type: "FC"
device_option {
device_type: 1
device_id: 1
}
}
external_input: "data"
external_input: "fc_w"
external_input: "fc_b"
"""
def test_inject_copy_multi_use(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu1")
net.Relu("data", "relu2")
with core.DeviceScope(device_option):
net.Relu("data", "relu3")
net.Relu("data", "relu4")
device_option.device_id = 0
with core.DeviceScope(device_option):
net.Relu("data", "relu5")
device_option.device_id = 1
with core.DeviceScope(device_option):
net.Relu("data", "relu6")
new_net, _ = core.InjectCrossDeviceCopies(net)
op = new_net._net.op[0]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "data_gpu_1")
op = new_net._net.op[1]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.output[0], "relu1")
op = new_net._net.op[2]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu2")
op = new_net._net.op[3]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.input[0], "data_gpu_1")
self.assertEqual(op.output[0], "relu3")
op = new_net._net.op[4]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "relu4")
op = new_net._net.op[5]
self.assertEqual(op.type, "CopyCPUToGPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 0)
self.assertEqual(op.output[0], "data_gpu_0")
op = new_net._net.op[6]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 0)
self.assertEqual(op.input[0], "data_gpu_0")
self.assertEqual(op.output[0], "relu5")
op = new_net._net.op[7]
self.assertEqual(op.type, "Relu")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 1)
self.assertEqual(op.input[0], "data_gpu_1")
self.assertEqual(op.output[0], "relu6")
"""
For reference, net.Proto() should be like:
name: ""
op {
input: "data"
output: "data_gpu_1"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "data_gpu_1"
output: "relu1"
name: ""
type: "Relu"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "data"
output: "relu2"
name: ""
type: "Relu"
}
op {
input: "data_gpu_1"
output: "relu3"
name: ""
type: "Relu"
device_option {
device_type: 1
device_id: 1
}
}
op {
input: "data"
output: "relu4"
name: ""
type: "Relu"
}
op {
input: "data"
output: "data_gpu_0"
name: ""
type: "CopyCPUToGPU"
device_option {
device_type: 1
device_id: 0
}
}
op {
input: "data_gpu_0"
output: "relu5"
name: ""
type: "Relu"
device_option {
device_type: 1
device_id: 0
}
}
op {
input: "data_gpu_1"
output: "relu6"
name: ""
type: "Relu"
device_option {
device_type: 1
device_id: 1
}
}
external_input: "data"
"""
def test_inject_copy_placeholder_ops(self):
'''
Test inject cross device copies with placeholder ops. Placeholder ops
are decorator/fake ops that don't have operator schema.
'''
# Create CPU and GPU devices on 2 nodes.
cpu_device = []
gpu_device = []
for i in range(0, 2):
cpu_device.append(caffe2_pb2.DeviceOption())
cpu_device[i].node_name = 'node:' + str(i)
gpu_device.append(caffe2_pb2.DeviceOption())
gpu_device[i].device_type = workspace.GpuDeviceType
gpu_device[i].device_id = 0
gpu_device[i].node_name = 'node:' + str(i)
send_node = 'node:0'
recv_node = 'node:1'
placeholder_send = 'Placeholder:Dummy:Send'
placeholder_recv = 'Placeholder:Dummy:Recv'
# init_net.
init_net = core.Net("init_net")
with core.DeviceScope(gpu_device[0]):
weight = init_net.XavierFill([], 'fc_w', shape=[10, 100])
bias = init_net.ConstantFill([], 'fc_b', shape=[10, ])
with core.DeviceScope(cpu_device[0]):
op = core.CreateOperator(
placeholder_send, [weight, bias], [],
dst_node=recv_node)
init_net._net.op.extend([op])
# train_net
train_net = core.Net("train_net")
with core.DeviceScope(cpu_device[1]):
# XXX. replace hardcoded op name. Move test to net_transforms.
op = core.CreateOperator(
placeholder_recv, [], [weight, bias],
src_node=send_node)
train_net._net.op.extend([op])
train_net.FC(["data", weight, bias], "fc1")
# Inject cross device copies.
init_net, x_dev_state = core.InjectCrossDeviceCopies(
init_net,
placeHolderOps=[placeholder_send, placeholder_recv])
train_net, x_dev_state = core.InjectCrossDeviceCopies(
train_net, x_dev_state,
placeHolderOps=[placeholder_send, placeholder_recv])
# Verify (init_net)
op = init_net._net.op[2]
self.assertEqual(op.type, "CopyGPUToCPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 0)
self.assertEqual(op.output[0], "fc_w_cpu")
op = init_net._net.op[3]
self.assertEqual(op.type, "CopyGPUToCPU")
self.assertEqual(op.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(op.device_option.device_id, 0)
self.assertEqual(op.output[0], "fc_b_cpu")
op = init_net._net.op[4]
self.assertEqual(op.type, placeholder_send)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[0], "fc_w_cpu")
self.assertEqual(op.input[1], "fc_b_cpu")
# Verify (train_net)
op = train_net._net.op[0]
self.assertEqual(op.type, placeholder_recv)
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.output[0], "fc_w_cpu")
self.assertEqual(op.output[1], "fc_b_cpu")
op = train_net._net.op[3]
self.assertEqual(op.type, "FC")
self.assertEqual(op.device_option.device_type, 0)
self.assertEqual(op.input[1], "fc_w_cpu")
self.assertEqual(op.input[2], "fc_b_cpu")
def test_blob_inplace(self):
net = core.Net("test")
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = 1
net.Adagrad(['param', 'moment', 'grad', 'lr'], ['param', 'moment'])
with core.DeviceScope(device_option):
net.Relu("param", "param_relu_no_sense")
net, _ = core.InjectCrossDeviceCopies(net)
op = net._net.op[1]
self.assertEqual(op.type, 'CopyCPUToGPU')
self.assertEqual(op.input[0], 'param')
self.assertEqual(op.output[0], 'param_gpu_1')
op = net._net.op[2]
self.assertEqual(op.input[0], 'param_gpu_1')
net.Relu('nonsense_input', 'moment')
# should not raise inplace error
core.InjectCrossDeviceCopies(net)
with core.DeviceScope(device_option):
net.Relu('nonsense_input_gpu', 'moment')
with self.assertRaises(RuntimeError):
core.InjectCrossDeviceCopies(net)
class TestRerouteTensor(test_util.TestCase):
def test_reroute_tensor(self):
net = core.Net("reroute_tensor")
net.Conv(["input", "w", "b"], "conv1")
net.Relu(["conv1"], "conv1_relu")
new_op = core.CreateOperator("SpatialBN",
["conv1", "scale", "bias", "mean", "var"],
["conv1_bn", "mean", "var", "saved_mean", "saved_var"])
# insert bn between conv and relu
net.reroute_tensor("conv1", new_op, [net.Proto().op[1]])
self.assertEqual(new_op, net.Proto().op[1], "insertion failed")
self.assertEqual(net.Proto().op[2].input[0], "conv1_bn", "reroute failed")
class TestRunAllOnGPU(test_util.TestCase):
def test_rnn_run_on_gpu(self):
step_net = core.Net("step_net")
step_net.Conv(["input_1", "w", "b"], "conv1")
step_net.Relu(["conv1"], "input_1")
net = core.Net("to_run_on_gpu")
net.RecurrentNetwork(["input_1"], ["input_1"], step_net=step_net.Proto())
net.Relu(["input_1"], "input_relu")
# check network structure before conversion
net_proto = net.Proto()
self.assertFalse(net_proto.HasField('device_option'))
self.assertTrue(net_proto.op[0].arg[0].name == 'step_net')
self.assertTrue(net_proto.op[0].arg[0].HasField('n'))
self.assertFalse(net_proto.op[0].arg[0].n.HasField('device_option'))
net.RunAllOnGPU(gpu_id=3, use_cudnn=True)
# check that root net and rnn net got device_option attribute assigned
self.assertTrue(net_proto.HasField('device_option'))
self.assertEqual(net_proto.device_option.device_type, workspace.GpuDeviceType)
self.assertEqual(net_proto.device_option.device_id, 3)
self.assertTrue(net_proto.op[0].arg[0].n.HasField('device_option'))
if __name__ == '__main__':
unittest.main()