mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/50885 Test Plan: Imported from OSS Reviewed By: SplitInfinity Differential Revision: D26094906 Pulled By: anjali411 fbshipit-source-id: 7b2614f3ee4a30c4b4cf04aaa3432988b38a0721
47 lines
1.7 KiB
Python
47 lines
1.7 KiB
Python
import torch
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
devices = (torch.device('cpu'), torch.device('cuda:0'))
|
|
|
|
class TestComplex(JitTestCase):
|
|
def test_script(self):
|
|
def fn(a: complex):
|
|
return a
|
|
|
|
self.checkScript(fn, (3 + 5j,))
|
|
|
|
def test_pickle(self):
|
|
class ComplexModule(torch.jit.ScriptModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.a = 3 + 5j
|
|
|
|
def forward(self, b: int):
|
|
return b
|
|
|
|
loaded = self.getExportImportCopy(ComplexModule())
|
|
self.assertEqual(loaded.a, 3 + 5j)
|
|
|
|
class TestComplexTensor(TestCase):
|
|
@dtypes(*torch.testing.get_all_complex_dtypes())
|
|
def test_to_list(self, device, dtype):
|
|
# test that the complex float tensor has expected values and
|
|
# there's no garbage value in the resultant list
|
|
self.assertEqual(torch.zeros((2, 2), device=device, dtype=dtype).tolist(), [[0j, 0j], [0j, 0j]])
|
|
|
|
@dtypes(torch.float32, torch.float64)
|
|
def test_dtype_inference(self, device, dtype):
|
|
# issue: https://github.com/pytorch/pytorch/issues/36834
|
|
default_dtype = torch.get_default_dtype()
|
|
torch.set_default_dtype(dtype)
|
|
x = torch.tensor([3., 3. + 5.j], device=device)
|
|
torch.set_default_dtype(default_dtype)
|
|
self.assertEqual(x.dtype, torch.cdouble if dtype == torch.float64 else torch.cfloat)
|
|
|
|
instantiate_device_type_tests(TestComplexTensor, globals())
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|