pytorch/test/cpp/api/tensor_options.cpp
Edward Yang 2c5ae8c4bf Get rid of type() method on TensorOptions; use at::getType instead (#11023)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11023

I'd like TensorOptions to not know anything about Context, so I can
move it to ATen/core without pulling in Context.  To do this, the
type() method has to go, since it consults the context to get a Type.

Reviewed By: cpuhrsch

Differential Revision: D9562467

fbshipit-source-id: 61a18a76eb042a5e70b64b963501e9d68c25d4f0
2018-08-31 14:27:05 -07:00

137 lines
4.1 KiB
C++

#include "catch.hpp"
#include <torch/tensor.h>
#include <ATen/Context.h>
#include <ATen/Functions.h>
#include <ATen/OptionsGuard.h>
#include <ATen/TensorOptions.h>
#include <vector>
#include <string>
using namespace at;
// A macro so we don't lose location information when an assertion fails.
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
REQUIRE(options.device().type() == Device((device_), (index_)).type()); \
REQUIRE(options.device().index() == Device((device_), (index_)).index()); \
REQUIRE(options.dtype() == (type_)); \
REQUIRE(options.layout() == (layout_))
#define REQUIRE_TENSOR_OPTIONS(device_, index_, type_, layout_) \
REQUIRE(tensor.device().type() == Device((device_), (index_)).type()); \
REQUIRE(tensor.device().index() == Device((device_), (index_)).index()); \
REQUIRE(tensor.type().scalarType() == (type_)); \
REQUIRE(tensor.type().layout() == (layout_))
TEST_CASE("TensorOptions/DefaultsToTheRightValues") {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
}
TEST_CASE("TensorOptions/ReturnsTheCorrectType") {
auto options = TensorOptions().device(kCPU).dtype(kInt).layout(kSparse);
REQUIRE(at::getMaybeVariableType(options) == getNonVariableType(Backend::SparseCPU, kInt));
}
TEST_CASE("TensorOptions/UtilityFunctionsReturnTheRightTensorOptions") {
auto options = dtype(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = layout(kSparse);
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = device({kCUDA, 1});
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = device_index(1);
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = dtype(kByte).layout(kSparse).device({kCUDA, 2}).device_index(3);
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
}
TEST_CASE("TensorOptions/ConstructsWellFromCPUTypes") {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
options = TensorOptions({kCPU, 0});
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
options = TensorOptions(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = TensorOptions(getNonVariableType(Backend::SparseCPU, kFloat));
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = TensorOptions(getNonVariableType(Backend::SparseCPU, kByte));
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
TEST_CASE("TensorOptions/ConstructsWellFromCPUTensors") {
auto options = empty(5, kDouble).options();
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
options = empty(5, getNonVariableType(Backend::SparseCPU, kByte)).options();
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
TEST_CASE("TensorOptions/ConstructsWellFromVariables") {
auto options = torch::empty(5).options();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
REQUIRE(!options.requires_grad());
options = torch::empty(5, at::requires_grad()).options();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
REQUIRE(!options.requires_grad());
}
TEST_CASE("Device/ParsesCorrectlyFromString") {
Device device("cpu:0");
REQUIRE(device == Device(kCPU, 0));
device = Device("cpu");
REQUIRE(device == Device(kCPU));
device = Device("cuda:123");
REQUIRE(device == Device(kCUDA, 123));
device = Device("cuda");
REQUIRE(device == Device(kCUDA));
std::vector<std::string> badnesses = {
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
for (const auto& badness : badnesses) {
REQUIRE_THROWS(Device(badness));
}
}
TEST_CASE("OptionsGuard") {
Tensor tensor;
{
OptionsGuard guard(TensorOptions{});
tensor = at::empty({10});
}
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kFloat, kStrided);
{
OptionsGuard guard(TensorOptions().dtype(kInt));
tensor = at::empty({10});
}
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kInt, kStrided);
{
OptionsGuard guard(TensorOptions().dtype(kInt).layout(kSparse));
tensor = at::empty({10});
}
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kInt, kSparse);
{
OptionsGuard guard(requires_grad(true));
tensor = torch::empty({10});
}
REQUIRE_TENSOR_OPTIONS(kCPU, -1, kFloat, kStrided);
REQUIRE(tensor.requires_grad());
}