pytorch/caffe2/python/layer_model_instantiator.py
Artem Volkhin ac7663b18c layer_model_instantiator: filter layers by tags
Summary: This diff allows to export a model partially, filtering layers by tags.

Reviewed By: kittipatv

Differential Revision: D4885610

fbshipit-source-id: 65394c5c9119d57a4d0703aa67ad8e79e4370e3b
2017-04-17 14:18:27 -07:00

69 lines
2.4 KiB
Python

## @package layer_model_instantiator
# Module caffe2.python.layer_model_instantiator
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import core
from caffe2.python.layers.layers import InstantiationContext
from caffe2.python.layers.tags import Tags
def _filter_layers(layers, include_tags):
if include_tags is None:
return layers
include_tags = set(include_tags)
return filter(lambda l: not include_tags.isdisjoint(l.tags), layers)
def generate_predict_net(model, include_tags=None):
predict_net = core.Net('predict_net')
for layer in _filter_layers(model.layers, include_tags):
if Tags.TRAIN_ONLY not in layer.tags:
layer.add_operators(
predict_net, context=InstantiationContext.PREDICTION)
return predict_net
def generate_eval_net(model, include_tags=None):
eval_net = core.Net('eval_net')
for layer in _filter_layers(model.layers, include_tags):
layer.add_operators(eval_net, context=InstantiationContext.EVAL)
input_schema = model.input_feature_schema + model.trainer_extra_schema
output_schema = model.output_schema + model.metrics_schema
eval_net.set_input_record(input_schema)
eval_net.set_output_record(output_schema)
return eval_net
def _generate_training_net_only(model, include_tags=None):
train_net = core.Net('train_net')
train_init_net = model.create_init_net('train_init_net')
for layer in _filter_layers(model.layers, include_tags):
layer.add_operators(train_net, train_init_net)
input_schema = model.input_feature_schema + model.trainer_extra_schema
output_schema = model.output_schema + model.metrics_schema
train_net.set_input_record(input_schema)
train_net.set_output_record(output_schema)
return train_init_net, train_net
def generate_training_nets_forward_only(model, include_tags=None):
train_init_net, train_net = _generate_training_net_only(model, include_tags)
return train_init_net, train_net
def generate_training_nets(model, include_tags=None):
train_init_net, train_net = _generate_training_net_only(model, include_tags)
loss = model.loss
grad_map = train_net.AddGradientOperators(loss.field_blobs())
model.apply_optimizers(train_net, train_init_net, grad_map)
return train_init_net, train_net