pytorch/test/cpp/api
Will Feng 2bcac59a30 Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29632

This PR is BC-breaking in the following way:

Previously, C++ `torch::tensor` with a floating-point literal with no suffix (e.g. `torch::tensor(1.1)`) or a (nested) braced-init-list of
floating-point literals with no suffix (e.g. `torch::tensor({{1.1, 2.2}})` produces a tensor with dtype `at::kDouble`. After this PR, it produces a tensor with dtype `torch::get_default_dtype()`, matching Python `torch.tensor` behavior.

Test Plan: Imported from OSS

Differential Revision: D18465819

Pulled By: yf225

fbshipit-source-id: 6834fe50335c677bc3832f2a5e9cf8d1ede9f665
2019-11-13 15:17:11 -08:00
..
any.cpp Separate libtorch tests from libtorch build. (#26927) 2019-10-02 08:04:52 -07:00
autograd.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
CMakeLists.txt Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
dataloader.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
enum.cpp Use c10::variant-based enums for F::grid_sample 2019-11-12 16:05:26 -08:00
expanding-array.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
functional.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
integration.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
jit.cpp Remove attempToRecoverType (#26767) 2019-10-16 11:07:13 -07:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
module.cpp Allow passing undefined Tensor to Module::register_parameter (#27948) 2019-10-15 10:10:42 -07:00
modulelist.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
modules.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
nn_utils.cpp Add C++ API clip_grad_value_ for nn:utils (#28736) 2019-10-31 19:11:54 -07:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
ordered_dict.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
parallel.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
sequential.cpp C++/Python API parity for Conv{1,2,3}d layers, and add F::conv{1,2,3}d functionals (#28917) 2019-11-13 12:53:31 -08:00
serialize.cpp Implement more of of the nn.Module API (#28828) 2019-11-06 22:58:25 -08:00
static.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
support.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
support.h Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
tensor_cuda.cpp Deprecate tensor.data<T>(), and codemod tensor.data<T>() to tensor.data_ptr<T>() (#24886) 2019-08-21 20:11:24 -07:00
tensor_options_cuda.cpp Rename getNonVariableDeprecatedTypeProperties to getDeprecatedTypeProperties (#29203) 2019-11-13 07:43:32 -08:00
tensor_options.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
tensor.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
torch_include.cpp Relax set_num_threads restriction in parallel native case (#27947) 2019-10-16 21:53:36 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.