mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
It contains formatting and other minor fixes. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127833 Approved by: https://github.com/ezyang
85 lines
2.7 KiB
C++
85 lines
2.7 KiB
C++
#pragma once
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <ATen/core/functional.h>
|
|
#include <c10/core/TensorOptions.h>
|
|
#include <torch/csrc/Export.h>
|
|
#include <utility>
|
|
|
|
namespace torch::utils {
|
|
|
|
/// Generate an ID for a combination of tensor backend + scalar type to be used
|
|
/// when ordering tensors ('like' tensors are grouped by pulling out their
|
|
/// backend + scalar type, so this function combines that into a single number)
|
|
inline size_t type_id(const at::Tensor& tensor) {
|
|
return static_cast<size_t>(tensor.options().backend()) *
|
|
static_cast<size_t>(at::ScalarType::NumOptions) +
|
|
static_cast<size_t>(tensor.scalar_type());
|
|
}
|
|
|
|
inline at::Tensor flatten_dense_tensors(at::TensorList tensors) {
|
|
return at::flatten_dense_tensors(tensors);
|
|
}
|
|
|
|
inline std::vector<at::Tensor> unflatten_dense_tensors(
|
|
const at::Tensor& flat,
|
|
at::TensorList tensors) {
|
|
return at::unflatten_dense_tensors(flat, tensors);
|
|
}
|
|
|
|
struct TensorGroup {
|
|
std::vector<at::Tensor> tensors;
|
|
size_t size = 0;
|
|
|
|
size_t type_id() {
|
|
AT_ASSERT(!tensors.empty());
|
|
return ::torch::utils::type_id(tensors[0]);
|
|
}
|
|
|
|
const at::TensorOptions options() {
|
|
AT_ASSERT(!tensors.empty());
|
|
return tensors[0].options();
|
|
}
|
|
};
|
|
|
|
// Helper function that takes a list of tensors and splits them into tensor
|
|
// groups by the size limit and outputs these tensor groups. If the input
|
|
// tensors are of different tensor types, they will be split into different
|
|
// groups as well.
|
|
//
|
|
// Two options of splitting provided to the user,
|
|
//
|
|
// Imagine the size_limit is 256 and the list of input tensors are:
|
|
// tensor_a(fp16 - 128 bytes),
|
|
// tensor_b(fp32 - 256 bytes),
|
|
// tensor_c(fp16 - 128 bytes),
|
|
//
|
|
// when fine_grained == false:
|
|
// The function will read the list of tensors sequentially and accumulate
|
|
// enough tensors for each data type until the size_limit, therefore:
|
|
// it will output: {{tensor_a, tensor_c}, {tensor_b}}
|
|
//
|
|
// when fine_grained == true:
|
|
// The function will read the list of tensors sequentially and accumulate
|
|
// enough tensors for all data types until the size_limit, and then split
|
|
// the accumulated tensors into different groups by data types, therefore:
|
|
// it will output: {{tensor_a}, {tensor_b}, {tensor_c}}
|
|
TORCH_API std::vector<TensorGroup> take_tensors(
|
|
at::TensorList tensors,
|
|
size_t size_limit,
|
|
bool fine_grained = false);
|
|
|
|
TORCH_API void reorder_tensors_like(
|
|
std::vector<at::Tensor>& tensors,
|
|
at::TensorList order);
|
|
|
|
TORCH_API std::pair<at::Tensor, at::Tensor> flatten_sparse_tensors(
|
|
at::TensorList tensors);
|
|
|
|
TORCH_API std::vector<at::Tensor> unflatten_sparse_tensors(
|
|
const at::Tensor& flat_indices,
|
|
const at::Tensor& flat_values,
|
|
at::TensorList tensors);
|
|
|
|
} // namespace torch::utils
|