pytorch/torch/csrc/jit/codegen/fuser/codegen.cpp
Jeff Daily 2a7df657fe [ROCm] use hiprtc precompiled header (#54350)
Summary:
HIP's runtime compiler (hiprtc) is adding support for precompiled HIP headers in the ROCm 4.2 release.  Conditionally add support for this feature.  Using this feature will improve the ROCm torch wheel user experience; users will no longer need to install HIP headers separately to use torch JIT features.

The use of this feature is conditionalized on a new ROCM_VERSION macro.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/54350

Reviewed By: H-Huang

Differential Revision: D27449031

Pulled By: malfet

fbshipit-source-id: 81a8d7847a47ce2bb253d1ea58740ef66ed154a3
2021-03-31 13:36:50 -07:00

707 lines
24 KiB
C++

#include <torch/csrc/jit/codegen/fuser/codegen.h>
#include <ATen/ATen.h>
#include <c10/util/Exception.h>
#include <torch/csrc/jit/codegen/fuser/compiler.h>
#include <torch/csrc/jit/codegen/fuser/interface.h>
#include <torch/csrc/jit/codegen/fuser/tensor_info.h>
#include <torch/csrc/jit/frontend/code_template.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/codegen/fuser/cpu/resource_strings.h>
#include <torch/csrc/jit/codegen/fuser/cuda/resource_strings.h>
#include <cmath>
#include <cstdint>
#include <iostream>
#include <sstream>
#include <tuple>
#include <vector>
namespace torch {
namespace jit {
namespace fuser {
// Template for computing the offset into the tensor to access a value
static auto dim_calc = CodeTemplate(R"(
//printf("tensor ${tensor} sizes[${d}] = %d, strides[${d}] = %d\n", ${tensor}.sizes[${d}],${tensor}.strides[${d}]);
size_t ${tensor}_dimIndex${d} = ${tensor}_linearIndex ${mod_sizes};
${tensor}_offset += ${tensor}_dimIndex${d} ${times_stride};
)");
static std::string valueName(const Value* n) {
return "n" + c10::to_string(n->unique());
}
static std::string scalarValue(const int64_t v) {
return c10::to_string(v);
}
static std::string scalarValue(const bool v) {
return c10::to_string(v);
}
// Note: The NAN, NEG_INFINITY and POS_INFINITY strings map to device-specific
// implementations of these special values. These macros are found in the
// resource strings for each device.
static std::string scalarValue(const double v) {
std::ostringstream out;
if (std::isnan(v)) {
out << "NAN";
} else if (std::isinf(v)) {
if (v < 0) {
out << "NEG_INFINITY";
} else {
out << "POS_INFINITY";
}
} else {
out << std::setprecision(16) << v;
}
return out.str();
}
// Note: Half is special-cased to avoid returning at::Half
static const char* scalarTypeName(const at::ScalarType type) {
if (type == at::ScalarType::Half) {
return "half";
}
if (type == at::ScalarType::BFloat16) {
return "__nv_bfloat16";
}
switch (type) {
#define DEFINE_CASE(ctype, name) \
case at::ScalarType::name: \
return #ctype;
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_CASE)
#undef DEFINE_CASE
default:
throw std::runtime_error("unknown scalar type");
}
}
static const char* calcScalarTypeName(const at::ScalarType type) {
if (type == at::ScalarType::Half) {
return "float";
}
if (type == at::ScalarType::BFloat16) {
return "float";
}
return scalarTypeName(type);
}
static std::string variableType(const std::shared_ptr<c10::Type>& t) {
if (t->kind() == TypeKind::IntType) {
return "int64_t";
} else if (t->kind() == TypeKind::FloatType) {
return "double";
} else if (t->kind() == TypeKind::BoolType) {
return "bool";
} else if (auto scalar_type = t->expectRef<TensorType>().scalarType()) {
return calcScalarTypeName(*scalar_type);
}
// something went wrong with the type analysis during shape propagation
throw std::runtime_error(
"unknown scalar type during JIT fusion code generation");
}
static std::string typeCastedValueName(
const std::shared_ptr<c10::Type>& t,
const at::ScalarType outtype,
const std::string& vn) {
if (t->kind() == TypeKind::IntType || t->kind() == TypeKind::BoolType) {
if (!isIntegralType(outtype, /*includeBool=*/false)) {
return std::string("((") + calcScalarTypeName(outtype) + ") " + vn + ")";
}
return vn;
} else if (t->kind() == TypeKind::FloatType) {
// We don't guard this on anything because in our type system for scalars,
// there is not a distinction between `float` and `double`, however there
// *is* a distinction in tensor scalar types. We conservatively insert a
// cast here, which may end up being a no-op if the tensor's scalar type
// is `double`.
return std::string("((") + calcScalarTypeName(outtype) + ") " + vn + ")";
} else if (t->kind() == TypeKind::NoneType) {
// Support None value for optional arguments like memory format
return vn;
} else if (auto scalar_type = t->expectRef<TensorType>().scalarType()) {
if (*scalar_type != outtype) {
return std::string("((") + calcScalarTypeName(outtype) + ") " + vn + ")";
}
return vn;
}
// something went wrong with the type analysis during shape propagation
throw std::runtime_error(
"unknown scalar type during JIT fusion code generation");
}
// Writes RHS of special handling "simple mappable" ops
static std::string encodeSpecialRHS(const Node* n, TemplateEnv& env) {
// special case for clamp fusion on missing min/max inputs
// Note: It may seem unusual to have the bounds as the first case below,
// this is so that if min or max is NaN, they are "ignored"
// and when the input is NaN, the output is, too
if (n->kind() == aten::clamp) {
const auto min = n->input(1);
const auto max = n->input(2);
env.s("0", valueName(n->input(0)));
if (!min->node()->mustBeNone() && !max->node()->mustBeNone()) {
env.s("1", valueName(min));
env.s("2", valueName(max));
return format("(${0} < ${1} ? ${1} : (${0} > ${2}? ${2} : ${0}))", env);
} else if (min->node()->mustBeNone()) {
env.s("1", valueName(max));
return format("(${0} > ${1} ? ${1} : ${0})", env);
} else if (max->node()->mustBeNone()) {
env.s("1", valueName(min));
return format("(${0} < ${1} ? ${1} : ${0})", env);
} else {
throw std::runtime_error(
"At least one of 'min' or 'max' must not be None");
}
} else {
throw std::runtime_error("Cannot encode RHS of the node, op not supported");
}
}
// This struct specifies a template for dispatching specific aten:: operators.
// The current variants of RHS code selection we support are for double and
// float output values. For example, an aten::log operator which is assigned
// to a float value would emit logf(), whereas an aten::log operator which is
// assigned to a double would emit log().
struct RHSTemplate {
// Common case: float and double dispatch are identical
RHSTemplate(const char* for_float)
: for_float(for_float), for_double(for_float) {}
RHSTemplate(const char* for_float, const char* for_double)
: for_float(for_float), for_double(for_double) {}
const char* for_float;
const char* for_double;
};
// Writes "simple mappable" ops
static std::string encodeRHS(const Node* n) {
static std::unordered_map<NodeKind, RHSTemplate> simple_map_ops = {
// unary
{aten::_cast_Float, "static_cast<float>(${0})"},
{aten::abs, "fabs(${0})"},
{aten::sigmoid, {"1.f / (1.f + expf(-${0}))", "1. / (1. + exp(-${0}))"}},
{aten::relu, "${0} < 0 ? 0.f : ${0} "},
{aten::threshold,
"${0} <= ${1} ? static_cast<decltype(${0})>(${2}) : ${0} "},
{aten::log, {"logf(${0})", "log(${0})"}},
{aten::log10, {"log10f(${0})", "log10(${0})"}},
{aten::log1p, {"log1pf(${0})", "log1p(${0})"}},
{aten::log2, {"log2f(${0})", "log2(${0})"}},
{aten::lgamma, {"lgammaf(${0})", "lgamma(${0})"}},
{aten::exp, {"expf(${0})", "exp(${0})"}},
{aten::expm1, {"expm1f(${0})", "expm1(${0})"}},
{aten::erf, {"erff(${0})", "erf(${0})"}},
{aten::erfc, {"erfcf(${0})", "erfc(${0})"}},
{aten::cos, {"cosf(${0})", "cos(${0})"}},
{aten::acos, {"acosf(${0})", "acos(${0})"}},
{aten::cosh, {"coshf(${0})", "cosh(${0})"}},
{aten::sin, {"sinf(${0})", "sin(${0})"}},
{aten::asin, {"asinf(${0})", "asin(${0})"}},
{aten::sinh, {"sinhf(${0})", "sinh(${0})"}},
{aten::tan, {"tanf(${0})", "tan(${0})"}},
{aten::atan, {"atanf(${0})", "atan(${0})"}},
{aten::tanh, {"tanhf(${0})", "tanh(${0})"}},
{aten::sqrt, {"sqrtf(${0})", "sqrt(${0})"}},
{aten::rsqrt, {"rsqrtf(${0})", "rsqrt(${0})"}},
{aten::ceil, {"ceilf(${0})", "ceil(${0})"}},
{aten::floor, {"floorf(${0})", "floor(${0})"}},
{aten::round, {"roundf(${0})", "round(${0})"}},
{aten::trunc, {"truncf(${0})", "trunc(${0})"}},
{aten::frac, {"${0} - truncf(${0})", "${0} - trunc(${0})"}},
{aten::reciprocal, {"1.f/(${0})", "1./(${0})"}},
{aten::neg, "-${0}"},
// simple binary
{aten::atan2, "atan2(${0}, ${1})"},
{aten::min,
"isnan(${0}) ? ${0} : (isnan(${1}) ? ${1} : (${0} < ${1} ? ${0} : ${1}))"},
{aten::max,
"isnan(${0}) ? ${0} : (isnan(${1}) ? ${1} : (${0} < ${1} ? ${1} : ${0}))"},
// binary with other
// TODO: some of these ops will not get generated because
// we only work on float inputs/outputs, but they are here to record
// that they are valid mappable ops once we handle more type
{aten::__and__, "${0} && ${1}"},
{aten::__lshift__, "${0} << ${1}"},
{aten::__or__, "${0} || ${1}"},
{aten::__rshift__, "${0} >> ${1}"},
{aten::__xor__, "${0} ^ ${1}"},
{aten::addcmul, "${0} + ${3} * ${1} * ${2}"},
{aten::div, "${0} / ${1}"},
{aten::eq, "${0_nocast} == ${1_nocast}"},
{aten::fmod, "fmodf(${0}, ${1})"},
{aten::ge, "(${0_nocast} >= ${1_nocast})"},
{aten::gt, "${0_nocast} > ${1_nocast}"},
{aten::le, "(${0_nocast} <= ${1_nocast})"},
{aten::lt, "${0_nocast} < ${1_nocast}"},
{aten::lerp, "${0} + ${2} * (${1} - ${0})"},
{aten::type_as, "(${0})"},
{aten::mul, "${0} * ${1}"},
{aten::ne, "${0_nocast} != ${1_nocast}"},
{aten::remainder, "fmod((${1} + fmod(${0}, ${1})), ${1})"},
{aten::pow, {"powf(${0}, ${1})", "pow(${0}, ${1})"}},
// alpha
{aten::add, "${0} + ${2}*${1}"},
{aten::sub, "(${0} - ${2}*${1})"},
{aten::rand_like, "uniform(rnd())"},
// where
{aten::where, "(${0} ? ${1} : ${2})"},
};
TemplateEnv env;
if (simple_map_ops.find(n->kind()) == simple_map_ops.end()) {
return encodeSpecialRHS(n, env);
} else {
size_t i = 0;
auto outtype = n->output()->type()->expectRef<TensorType>().scalarType();
TORCH_INTERNAL_ASSERT(outtype);
for (auto in : n->inputs()) {
// PyTorch converts (scalar) argument types to result before applying the
// operator e.g. 1.4-torch.tensor(3) = -2
env.s(
c10::to_string(i),
typeCastedValueName(in->type(), *outtype, valueName(in)));
// Uncasted operands only used for comparison operators
env.s(c10::to_string(i) + "_nocast", valueName(in));
i++;
}
const auto& templ = simple_map_ops.at(n->kind());
const char* str = nullptr;
if (*outtype == at::kFloat) {
str = templ.for_float;
} else {
str = templ.for_double;
}
AT_ASSERT(str);
return format(str, env);
}
}
static void emitIndexingFor(
std::ostream& out,
const std::string& tensor,
const int ndim,
const bool last_is_cont) {
TemplateEnv env;
env.s("tensor", tensor);
out << format("IndexType ${tensor}_offset = 0;\n", env);
out << format("IndexType ${tensor}_linearIndex = linearIndex;\n", env);
for (int d = ndim - 1; d >= 0; --d) {
env.d("d", d);
env.s("mod_sizes", d > 0 ? format("% ${tensor}.sizes[${d}]", env) : "");
env.s(
"times_stride",
(d < ndim - 1 || !last_is_cont)
? format("* ${tensor}.strides[${d}]", env)
: "");
out << dim_calc.format(env);
if (d > 0) {
out << format("${tensor}_linearIndex /= ${tensor}.sizes[${d}];\n", env);
}
}
}
static void emitCheckFor(
std::ostream& out,
const std::string& tensor,
const int ndim,
const TensorDesc& desc) {
TemplateEnv env;
env.s("tensor", tensor);
env.s("scalar_type", scalarTypeName(desc.scalar_type));
// allocate buffer to load 4
out << format("${scalar_type} ${tensor}_buf[4];\n", env);
// check if last dim is contiguous
if (!desc.lastIsContiguous()) {
out << "flag_vec4 = false;\n";
return;
}
// disable on dtype > 4 bytes for performance
if (at::elementSize(desc.scalar_type) > 4) {
out << "flag_vec4 = false;\n";
return;
}
// last dim size multiple of 4, other dim stride multiple of 4
for (int d = ndim - 1; d >= 0; --d) {
env.d("d", d);
if (d == ndim - 1) {
// last dim stride already checked above at compile time
out << format(
"if(${tensor}.sizes[${d}] % 4 != 0) flag_vec4 = false;\n", env);
} else {
out << format(
"if(${tensor}.strides[${d}] % 4 != 0) flag_vec4 = false;\n", env);
}
}
// pointer aligned
out << format(
"if(((uint64_t) ${tensor}.data) % (4 * sizeof(${scalar_type})) != 0) flag_vec4 = false;\n",
env);
}
// TODO: handle cases where we need to generate > 2^32 element tensors
std::string generateKernel(
const std::string& name,
const Graph& graph,
const std::vector<std::pair<const Value*, const c10::optional<TensorDesc>>>&
inputs,
const std::vector<std::pair<const Value*, const TensorDesc>>& outputs,
const bool use_cuda) {
TemplateEnv env;
env.s("kernelName", name);
env.s(
"IndexType",
"unsigned int"); // Note: not uint32_t to avoid including cstdint
std::stringstream tensorChecks;
std::stringstream body;
std::stringstream body_vec4;
std::stringstream load;
std::stringstream store;
std::stringstream tensorOffsets;
std::vector<std::string> formals;
std::vector<std::string> argument_loads;
// Lambda for writing arguments
auto emitFormal = [&](const Value* n, const TensorDesc& desc) {
env.d(
"formal_index",
formals.size() +
1); // + 1 because the first argument is the linearIndex
std::string tensor =
"t" +
c10::to_string(
formals.size()); // can't be unique() because Param may be an output
const auto nDim = desc.nDim();
emitCheckFor(tensorChecks, tensor, nDim, desc);
emitIndexingFor(tensorOffsets, tensor, nDim, desc.lastIsContiguous());
env.s("tensor", tensor);
env.d("nDim", nDim);
env.s("scalar_type", scalarTypeName(desc.scalar_type));
formals.push_back(
format("const TensorInfo<${scalar_type},${nDim}> ${tensor}", env));
argument_loads.push_back(format(
"*static_cast<TensorInfo<${scalar_type},${nDim}>*>(args[${formal_index}])",
env));
};
auto emitScalarFormal = [&](const Value* n) {
env.d(
"formal_index",
formals.size() +
1); // + 1 because the first argument is the linearIndex
std::string scalar =
"s" +
c10::to_string(
formals.size()); // can't be unique() because Param may be an output
env.d(
"formal_index",
formals.size() +
1); // + 1 because the first argument is the linearIndex
env.s("scalar", scalar);
env.s("scalar_type", variableType(n->type()));
formals.push_back(format("${scalar_type} ${scalar}", env));
argument_loads.push_back(
format("*static_cast<${scalar_type}*>(args[${formal_index}])", env));
};
// Writes input parameters
for (const auto& input : inputs) {
if (input.second.has_value()) {
emitFormal(input.first, *input.second);
} else {
emitScalarFormal(input.first);
}
}
// Writes output parameters
for (const auto& output : outputs) {
emitFormal(output.first, output.second);
}
// Acquires input values
bool has_half_tensor = false;
bool has_bfloat_tensor = false;
size_t formal_count = 0;
for (const auto& input : inputs) {
auto p = input.first;
env.s("node", valueName(p));
env.d("formal", formal_count++);
// Acquires and converts (if needed) inputs
// Note: conversion from half is only supported for CUDA kernels.
// The conversion immediately converts fp16 inputs to float.
// Access for other types is common to CUDA and CPU kernels.
if (input.second.has_value()) {
const auto is_half = input.second.has_value() &&
((*input.second).scalar_type == at::ScalarType::Half);
const auto is_bfloat = input.second.has_value() &&
((*input.second).scalar_type == at::ScalarType::BFloat16);
const auto is_bool = input.second.has_value() &&
((*input.second).scalar_type == at::ScalarType::Bool);
if (is_half) {
AT_ASSERT(use_cuda);
env.s(
"access",
format("__half2float(t${formal}.data[t${formal}_offset])", env));
env.s("access_vec4", format("__half2float(t${formal}_buf[i])", env));
has_half_tensor = true;
} else if (is_bfloat) {
AT_ASSERT(use_cuda);
env.s(
"access",
format(
"__bfloat162float(t${formal}.data[t${formal}_offset])", env));
env.s(
"access_vec4", format("__bfloat162float(t${formal}_buf[i])", env));
has_bfloat_tensor = true;
} else if (use_cuda) {
// No __ldg overload for bool
if (is_bool) {
env.s("access", format("t${formal}.data[t${formal}_offset]", env));
} else {
env.s(
"access",
format("__ldg(&t${formal}.data[t${formal}_offset])", env));
}
env.s("access_vec4", format("t${formal}_buf[i]", env));
} else {
env.s("access", format("t${formal}.data[t${formal}_offset]", env));
env.s("access_vec4", format("t${formal}_buf[i]", env));
}
env.s("lhs_type", calcScalarTypeName(input.second.value().scalar_type));
// load input in vectorized code path
auto ele_size = at::elementSize((*input.second).scalar_type);
if (ele_size == 1) {
env.s(
"load4",
format(
"*(reinterpret_cast<float*>(t${formal}_buf)) = *(reinterpret_cast<float*>(t${formal}.data + t${formal}_offset))",
env));
} else if (ele_size == 2) {
env.s(
"load4",
format(
"*(reinterpret_cast<float2*>(t${formal}_buf)) = *(reinterpret_cast<float2*>(t${formal}.data + t${formal}_offset))",
env));
} else if (ele_size == 4) {
env.s(
"load4",
format(
"*(reinterpret_cast<float4*>(t${formal}_buf)) = *(reinterpret_cast<float4*>(t${formal}.data + t${formal}_offset))",
env));
} else {
env.s(
"load4",
format(
"for(int i = 0; i<4; i++) t${formal}_buf[i] = t${formal}.data[t${formal}_offset + i]",
env));
}
load << format("${load4};\n", env);
} else {
env.s("access", format("s${formal}", env));
env.s("access_vec4", format("s${formal}", env));
env.s("lhs_type", variableType(input.first->type()));
}
body << format("${lhs_type} ${node} = ${access};\n", env);
body_vec4 << format("${lhs_type} ${node} = ${access_vec4};\n", env);
}
bool has_random = false;
// Generates code for intermediate nodes
// Note: Concat and Chunk are implicitly generated
// Note: Random number generation is only supported for CUDA kernels.
// Note: Constant None node is ignored and we will handle it in the
// places where the constant None node is used
// Note: No need to iterate over reference as n is a pointer
for (const auto n : graph.nodes()) {
static_assert(std::is_pointer<decltype(n)>::value, "n must be a pointer");
// Note: FusedConcat nodes work by narrowing the output Tensors before the
// kernel runs
if (n->kind() == prim::FusedConcat)
continue;
if (n->kind() == prim::ConstantChunk)
continue;
if (n->mustBeNone())
continue;
if (n->kind() == aten::rand_like) {
AT_ASSERT(use_cuda);
has_random = true;
}
// Always emit double for prim::Constant. This will be narrowed later based
// on either:
// - Tensor-Scalar operator type rules
// - Math function rules
if (n->kind() == prim::Constant) {
const auto val = toIValue(n->output()).value();
std::string rhs;
if (val.isDouble()) {
rhs = scalarValue(val.toDouble());
} else if (val.isBool()) {
rhs = scalarValue(val.toBool());
} else {
AT_ASSERT(val.isInt());
rhs = scalarValue(val.toInt());
}
env.s("node", valueName(n->output()));
env.s("rhs", rhs);
env.s("lhs_type", variableType(n->output()->type()));
} else {
env.s("node", valueName(n->output()));
env.s("rhs", encodeRHS(n));
env.s("lhs_type", variableType(n->output()->type()));
}
body << format("${lhs_type} ${node} = ${rhs};\n", env);
body_vec4 << format("${lhs_type} ${node} = ${rhs};\n", env);
}
// Generates writes to output tensors
for (const auto& output : outputs) {
env.d("formal", formal_count++);
env.s("access", format("t${formal}.data[t${formal}_offset]", env));
env.s("access_vec4", format("t${formal}_buf[i]", env));
env.s("node", valueName(output.first));
// Acquires and converts (if needed) outputs
// Note: conversion to half is only supported for CUDA kernels.
const auto is_half = (output.second.scalar_type == at::ScalarType::Half);
const auto is_bfloat =
(output.second.scalar_type == at::ScalarType::BFloat16);
if (is_half) {
AT_ASSERT(use_cuda);
body << format("${access} = __float2half(${node});\n", env);
body_vec4 << format("${access_vec4} = __float2half(${node});\n", env);
has_half_tensor = true;
} else if (is_bfloat) {
AT_ASSERT(use_cuda);
body << format("${access} = __float2bfloat16(${node});\n", env);
body_vec4 << format("${access_vec4} = __float2bfloat16(${node});\n", env);
has_bfloat_tensor = true;
} else {
body << format("${access} = ${node};\n", env);
body_vec4 << format("${access_vec4} = ${node};\n", env);
}
// store output in vectorized code path
auto ele_size = at::elementSize(output.second.scalar_type);
if (ele_size == 1) {
env.s(
"store4",
format(
"*(reinterpret_cast<float*>(t${formal}.data + t${formal}_offset)) = *(reinterpret_cast<float*>(t${formal}_buf))",
env));
} else if (ele_size == 2) {
env.s(
"store4",
format(
"*(reinterpret_cast<float2*>(t${formal}.data + t${formal}_offset)) = *(reinterpret_cast<float2*>(t${formal}_buf))",
env));
} else if (ele_size == 4) {
env.s(
"store4",
format(
"*(reinterpret_cast<float4*>(t${formal}.data + t${formal}_offset)) = *(reinterpret_cast<float4*>(t${formal}_buf))",
env));
} else {
env.s(
"store4",
format(
"for(int i = 0; i<4; i++) t${formal}.data[t${formal}_offset + i] = t${formal}_buf[i]",
env));
}
store << format("${store4};\n", env);
}
// Includes headers
// Note: CUDA kernels support halfs and random generation, CPU kernels do not
if (has_half_tensor) {
env.s("HalfHeader", cuda::half_support_literal);
} else {
env.s("HalfHeader", "");
}
if (has_bfloat_tensor) {
env.s("BFloat16Header", cuda::bfloat16_support_literal);
} else {
env.s("BFloat16Header", "");
}
if (has_random) {
env.s("RandHeader", cuda::rand_support_literal);
env.s("RandParam", cuda::rand_param);
env.s("RandInit", cuda::rand_init);
} else {
env.s("RandHeader", "");
env.s("RandParam", "");
env.s("RandInit", "");
}
// HIP headers must be included until precompiled header feature is available
// clang-format off
#ifdef __HIP_PLATFORM_HCC__
#if ROCM_VERSION < 40200
if (use_cuda && has_half_tensor) {
env.s("RuntimeHeader", R"(
#include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>
)");
} else if (use_cuda) {
env.s("RuntimeHeader", R"(
#include <hip/hip_runtime.h>
)");
}
#endif
#endif
// clang-format on
// Instantiates the CUDA or CPU-specific templates
env.s("tensorOffsets", tensorOffsets.str());
env.s("tensorChecks", tensorChecks.str());
env.s("kernelBody", body.str());
env.s("kernelBody_vec4", body_vec4.str());
env.s("kernelLoad", load.str());
env.s("kernelStore", store.str());
env.v("formals", formals);
env.v("argument_loads", argument_loads);
std::string code_string;
if (use_cuda) {
env.s("type_declarations", cuda::type_declarations_template.format(env));
code_string = cuda::cuda_compilation_unit_template.format(env);
} else {
env.s("type_declarations", cpu::type_declarations_template.format(env));
code_string = cpu::cpu_compilation_unit_template.format(env);
}
if (debugFuser()) {
std::cerr << "fusion code:" << code_string << std::endl;
}
return code_string;
}
} // namespace fuser
} // namespace jit
} // namespace torch