pytorch/torch/distributed/_tensor/dispatch.py
Wanchao Liang 2a1cb9640c [dtensor] support creating DTensor in submesh (#95458)
This PR supports creating DTensor in a submesh, if the rank is not
participating in the mesh, we assign the local tensor to be empty
tensor, and do nothing in the operator dispatch

Differential Revision: [D43643577](https://our.internmc.facebook.com/intern/diff/D43643577)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95458
Approved by: https://github.com/XilunWu
2023-02-28 17:54:26 +00:00

203 lines
8.0 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates
from typing import Callable, cast, Dict, Tuple, Union, Optional
import torch
import torch.distributed._tensor.api as dtensor
from torch.distributed._tensor.op_schema import (
ArgsType,
KwargsType,
OutputSpecType,
)
from torch.distributed._tensor.placement_types import DTensorSpec
from torch.distributed._tensor.sharding_prop import ShardingPropagator
from torch.distributed._tensor.redistribute import redistribute_dtensor
from torch.utils._pytree import tree_flatten, tree_unflatten
"""
If _ENABLE_FALLBACK set to False, dispatch will fail when an op doesn't
have a sharding rule registered.
"""
_ENABLE_FALLBACK = False
def wrap(res: object, spec: OutputSpecType) -> object:
if isinstance(res, torch.Tensor):
assert spec is not None and isinstance(
spec, DTensorSpec
), f"output spec does not match with output! Expected DTensorSpec, got {spec}."
assert spec.tensor_meta is not None
return dtensor.DTensor(
res,
spec.mesh,
spec.placements,
shape=spec.tensor_meta.shape,
dtype=spec.tensor_meta.dtype,
requires_grad=res.requires_grad,
stride=spec.tensor_meta.stride,
)
elif isinstance(res, (list, tuple)):
assert spec is not None and isinstance(
spec, (list, tuple)
), f"output spec does not match with output! Expected list/tuple, got {spec}."
res_list = []
for e, s in zip(res, spec):
# NOTE: local results might return Optional Tensor from ATen op, so we need
# to handle that case and make sure we don't wrap None with DTensor.
# (i.e. native_layer_norm.backward)
if e is not None and s is not None:
assert s.tensor_meta is not None
res_dt = dtensor.DTensor(
e,
s.mesh,
s.placements,
shape=s.tensor_meta.shape,
dtype=s.tensor_meta.dtype,
requires_grad=s.tensor_meta.requires_grad,
stride=s.tensor_meta.stride
)
else:
res_dt = None
res_list.append(res_dt)
return tuple(res_list) if isinstance(res, tuple) else res_list
else:
# if the res contains only non tensor values, we simply return it without rewrapping
return res
def pack_args_kwargs_with_local_tensor(
args: Union[ArgsType, KwargsType],
args_schema: Union[ArgsType, KwargsType],
redistribute_with_schema: bool = False,
) -> Union[ArgsType, KwargsType]:
flatten_args, args_tree_spec = tree_flatten(args)
flatten_args_schema, _ = tree_flatten(args_schema)
for i, arg in enumerate(flatten_args):
if isinstance(arg, dtensor.DTensor):
if redistribute_with_schema:
target_spec = flatten_args_schema[i]
arg = redistribute_dtensor(
arg, target_spec.mesh, target_spec.placements
)
# reuse the schema list and update it with local tensor
flatten_args_schema[i] = arg._local_tensor
return tree_unflatten(flatten_args_schema, args_tree_spec)
def _reshape_alias(
x: torch.Tensor, shape: Tuple[int, ...], strides: Tuple[int, ...]
) -> torch.Tensor:
return torch.ops.aten.view(x, shape)
_CURRENT_DECOMPOSITION_TABLE: Dict[Callable[..., object], Callable[..., object]] = {
torch.ops.aten._reshape_alias.default: _reshape_alias,
}
def operator_dispatch(
op_call: torch._ops.OpOverload,
args: Tuple[object, ...],
kwargs: Dict[str, object],
sharding_propagator: ShardingPropagator,
custom_dispatch_ops: Optional[Dict[str, Callable[..., object]]] = None,
) -> object:
# check that we are not getting mixed vanilla and Distributed tensors
arg_list, _ = tree_flatten(args)
mesh = None
for arg in arg_list:
if isinstance(arg, torch.Tensor) and not isinstance(arg, dtensor.DTensor):
raise RuntimeError(
f"{op_call}: got mixed torch.Tensor and DTensor, need to convert all"
" torch.Tensor to DTensor before calling distributed operators!"
)
if isinstance(arg, dtensor.DTensor):
if mesh is not None:
if mesh != arg.device_mesh:
raise NotImplementedError(
f"{op_call}: DTensor does not support cross-mesh operation yet!"
)
else:
mesh = arg.device_mesh
# first we need to lift some private aten aliases to public calls
if op_call in _CURRENT_DECOMPOSITION_TABLE:
return _CURRENT_DECOMPOSITION_TABLE[op_call](*args, **kwargs)
# STEP 0. See if there's a user defined custom aten operator
# implementations. Custom operators take the highest priority
if custom_dispatch_ops is not None and str(op_call) in custom_dispatch_ops:
# dispatch to user defined custom distributed tensor ops
return custom_dispatch_ops[str(op_call)](*args, **kwargs)
# unwrap the args/kwargs schema
op_schema = sharding_propagator.prepare_op_schema(op_call, args, kwargs)
output_sharding = sharding_propagator.propagate_op_sharding(op_call, op_schema)
# if the schema suggestion from sharding prop is not the same instance as the
# input op_schema, it indicates a reshard, we need to redistribute the input
# tensors before calling the local op
assert output_sharding.schema_suggestions is not None
suggested_input_schema = output_sharding.schema_suggestions[0]
needs_redistribute = suggested_input_schema is not op_schema
if mesh is not None and mesh.get_coordinate() is None:
# if we are on a non-participating device, we simply return
# an empty tensor for now.
# TODO: what if the op returns a non-tensor value, what if
# the op returns a list of tensors, we need to figure out
# a consistent way to handle that, and also need to figure
# out if we should communicate the result to non-participating
# ranks (i.e. a.sum() -> scalar, maybe we should set to 0)
local_results = torch.tensor([])
else:
# compute locally with redistribute first if needed
local_tensor_args = pack_args_kwargs_with_local_tensor(
args,
suggested_input_schema.args_schema,
redistribute_with_schema=needs_redistribute,
)
local_tensor_kwargs = pack_args_kwargs_with_local_tensor(
kwargs,
suggested_input_schema.kwargs_schema,
redistribute_with_schema=needs_redistribute,
)
# run local op computation with potentially modified args/kwargs
local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
local_tensor_kwargs = cast(Dict[str, object], local_tensor_kwargs)
local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
if suggested_input_schema.is_inplace:
# inplace op should return self instead of re-wrapping
self = cast(dtensor.DTensor, args[0])
self._spec = cast(DTensorSpec, output_sharding.output_spec)
return self
elif suggested_input_schema.is_out_variant:
# out variant could possibly have multiple out args (i.e. lu_unpack.out)
output_specs = (
(output_sharding.output_spec,)
if not isinstance(output_sharding.output_spec, tuple)
else output_sharding.output_spec
)
out_dts = []
spec_idx = 0
for arg in suggested_input_schema.func_schema.arguments:
if arg.is_out:
out_dt = cast(dtensor.DTensor, kwargs[arg.name])
out_dt._spec = cast(DTensorSpec, output_specs[spec_idx])
out_dts.append(out_dt)
spec_idx += 1
assert len(out_dts) >= 1, "out variant should have at least one out arg"
return tuple(out_dts) if len(out_dts) > 1 else out_dts[0]
else:
return wrap(local_results, output_sharding.output_spec)