mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: this was introduced due to rm and riv params in SpatialBN layer and the likes. We should be saving these params as well but it is not required to broadcast these params to all gpus after every epoch. Differential Revision: D4338749 fbshipit-source-id: d3bbc92cf0cd7d220a51d76aea8bffcfd6e520b7
538 lines
19 KiB
Python
538 lines
19 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from collections import OrderedDict
|
|
import logging
|
|
|
|
from caffe2.python import model_helper, dyndep, scope, workspace, core
|
|
from caffe2.proto import caffe2_pb2
|
|
|
|
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nccl:nccl_ops")
|
|
|
|
log = logging.getLogger("data_parallel_model")
|
|
log.setLevel(logging.INFO)
|
|
|
|
|
|
def Parallelize_GPU(
|
|
model_helper_obj,
|
|
input_builder_fun,
|
|
forward_pass_builder_fun,
|
|
param_update_builder_fun,
|
|
devices=range(0, workspace.NumCudaDevices()),
|
|
rendezvous=None,
|
|
net_type='dag',
|
|
broadcast_computed_params=True,
|
|
):
|
|
'''
|
|
Function to create a model that can run on many GPUs.
|
|
model_helper_obj: an object of ModelHelperBase, such as CNNModelHelper
|
|
input_builder_fun:
|
|
Function that adds the input operators
|
|
Note: Remember to instantiate reader outside of this
|
|
function so all GPUs share same reader object.
|
|
Signature: input_builder_fun(model)
|
|
forward_pass_builder_fun:
|
|
Function to add the operators to the model.
|
|
Must return list of loss-blob references that
|
|
are used to build the gradient.
|
|
Signature: forward_pass_builder_fun(model)
|
|
param_update_builder_fun:
|
|
Function that adds operators that are run after
|
|
gradient update, such as updating the weights and
|
|
weight decaying. Function is also passed the learning
|
|
rate scaling factor. You should multiple the learning
|
|
rate by the factor to maintain invariant of same
|
|
results with same total batch size, regardless of
|
|
number of gpus.
|
|
Signature: param_update_builder_fun(model, lr_scale)
|
|
devices: List of GPU ids, such as [0, 1, 2, 3],
|
|
rendezvous: used for rendezvous in distributed computation, if None
|
|
then only one node is used. To create rendezvous,
|
|
use <TBD>.
|
|
net_type: Network type
|
|
|
|
'''
|
|
log.info("Parallelizing model for devices: {}".format(devices))
|
|
extra_workers = 8 if rendezvous is not None else 0 # best-guess
|
|
model_helper_obj.net.Proto().num_workers = len(devices) * 4 + extra_workers
|
|
model_helper_obj.net.Proto().type = net_type
|
|
|
|
# Store some information in the model -- a bit ugly
|
|
model_helper_obj._devices = devices
|
|
model_helper_obj._rendezvous = rendezvous
|
|
model_helper_obj._grad_names = []
|
|
|
|
assert isinstance(model_helper_obj, model_helper.ModelHelperBase)
|
|
assert model_helper_obj.params == [], "Model needs to be empty"
|
|
|
|
# Add input and model
|
|
log.info("Create input and model training operators")
|
|
|
|
losses_by_gpu = {}
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope("gpu_{}".format(device)):
|
|
log.info("Model for GPU: {}".format(device))
|
|
input_builder_fun(model_helper_obj)
|
|
losses = forward_pass_builder_fun(model_helper_obj)
|
|
# Losses are not needed for test net
|
|
if param_update_builder_fun is not None:
|
|
assert isinstance(losses, list), \
|
|
'Model builder function must return list of loss blobs'
|
|
for loss in losses:
|
|
assert isinstance(loss, core.BlobReference), \
|
|
'Model builder func must return list of loss blobs'
|
|
|
|
losses_by_gpu[device] = losses
|
|
|
|
# Create parameter map
|
|
model_helper_obj._device_grouped_blobs =\
|
|
_GroupByDevice(devices, model_helper_obj.params)
|
|
|
|
# computed params
|
|
computed_params_grouped =\
|
|
_GroupByDevice(devices, model_helper_obj.computed_params)
|
|
model_helper_obj._device_grouped_blobs.update(computed_params_grouped)
|
|
|
|
model_helper_obj._param_names =\
|
|
model_helper_obj._device_grouped_blobs.keys()
|
|
model_helper_obj._computed_param_names = computed_params_grouped.keys()
|
|
|
|
if (param_update_builder_fun is None):
|
|
log.info("Parameter update function not defined --> only forward")
|
|
return
|
|
|
|
log.info("Adding gradient operators")
|
|
_AddGradientOperators(devices, model_helper_obj, losses_by_gpu)
|
|
|
|
# Group gradients by device and register to blob lookup
|
|
param_to_grad = model_helper_obj.param_to_grad
|
|
grads_ordered = [param_to_grad[p] for p in
|
|
model_helper_obj.params if p in param_to_grad]
|
|
gradients_grouped = _GroupByDevice(
|
|
devices,
|
|
grads_ordered,
|
|
)
|
|
model_helper_obj._device_grouped_blobs.update(gradients_grouped)
|
|
model_helper_obj._grad_names = gradients_grouped.keys()
|
|
|
|
log.info("Add gradient all-reduces for SyncSGD")
|
|
if broadcast_computed_params:
|
|
_BroadcastComputedParams(devices, model_helper_obj, rendezvous)
|
|
_AllReduceGradients(
|
|
devices, model_helper_obj, rendezvous
|
|
)
|
|
|
|
log.info("Post-iteration operators for updating params")
|
|
num_shards = 1 if rendezvous is None else rendezvous['num_shards']
|
|
lr_scale = 1.0 / (len(devices) * num_shards)
|
|
for device in devices:
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, device)
|
|
with core.DeviceScope(device_opt):
|
|
with core.NameScope("gpu_{}".format(device)):
|
|
param_update_builder_fun(model_helper_obj, lr_scale)
|
|
|
|
_AnalyzeOperators(model_helper_obj)
|
|
|
|
# Add initial parameter syncs
|
|
log.info("Add initial parameter sync")
|
|
if (rendezvous is not None):
|
|
_AddDistributedParameterSync(
|
|
devices,
|
|
model_helper_obj,
|
|
model_helper_obj.param_init_net,
|
|
model_helper_obj.param_init_net,
|
|
rendezvous,
|
|
)
|
|
|
|
_SyncParams(devices, model_helper_obj, model_helper_obj.param_init_net)
|
|
|
|
|
|
def _AddGradientOperators(devices, model, losses_by_gpu):
|
|
def create_grad(lossp):
|
|
return model.ConstantFill(lossp, str(lossp) + "_grad", value=1.0)
|
|
|
|
loss_grad = {}
|
|
# Explicitly need to create gradients on each GPU
|
|
for gpu_id in devices:
|
|
device = core.DeviceOption(caffe2_pb2.CUDA, gpu_id)
|
|
with core.DeviceScope(device):
|
|
for l in losses_by_gpu[gpu_id]:
|
|
lg = create_grad(l)
|
|
loss_grad[str(l)] = str(lg)
|
|
|
|
model.AddGradientOperators(loss_grad)
|
|
|
|
|
|
def FinalizeAfterCheckpoint(model, blobs, sync_iter=True):
|
|
if not hasattr(model, "_checkpoint_net"):
|
|
uniq_blob_names = [stripParamName(p) for p in blobs]
|
|
|
|
# Synchronize to the blob lookup map, as the provided
|
|
# blobs might have non-parameters, such as momemtum blobs.
|
|
log.info("Creating checkpoint synchronization net")
|
|
devices = model.GetDevices()
|
|
for name in uniq_blob_names:
|
|
if name not in model._device_grouped_blobs:
|
|
grouped = {
|
|
d:
|
|
core.BlobReference("gpu_{}{}{}".format(
|
|
d,
|
|
scope._NAMESCOPE_SEPARATOR,
|
|
name)
|
|
) for d in devices}
|
|
model._device_grouped_blobs[name] = grouped
|
|
|
|
model._checkpoint_net = core.Net("checkpoint_sync_net")
|
|
model._checkpoint_net.RunAllOnGPU()
|
|
|
|
if (model._rendezvous is not None):
|
|
checkpoint_init_net = core.Net("checkpoint_init_net")
|
|
checkpoint_init_net.RunAllOnGPU()
|
|
_AddDistributedParameterSync(
|
|
devices,
|
|
model,
|
|
checkpoint_init_net,
|
|
model._checkpoint_net,
|
|
model._rendezvous,
|
|
uniq_blob_names,
|
|
)
|
|
workspace.RunNetOnce(checkpoint_init_net)
|
|
|
|
# Setup sync of initial params
|
|
_SyncParams(devices, model, model._checkpoint_net, uniq_blob_names)
|
|
|
|
# Sync ITER -- which is in CPU scope
|
|
if sync_iter:
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
for gpu_idx in devices[1:]:
|
|
model._checkpoint_net.Copy(
|
|
"gpu_{}/ITER".format(devices[0]),
|
|
"gpu_{}/ITER".format(gpu_idx),
|
|
)
|
|
workspace.CreateNet(model._checkpoint_net)
|
|
|
|
# Run the sync
|
|
log.info("Run checkpoint net")
|
|
workspace.RunNet(model._checkpoint_net.Proto().name)
|
|
|
|
|
|
def _Broadcast(devices, model, net, param):
|
|
# TODO(akyrola): replace with NCCLBroadcast when it's working
|
|
# Copy params from gpu_0 to other
|
|
master_gpu = devices[0]
|
|
for gpu_idx in devices[1:]:
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, gpu_idx)
|
|
with core.DeviceScope(device_opt):
|
|
net.Copy(
|
|
model._device_grouped_blobs[param][master_gpu],
|
|
model._device_grouped_blobs[param][gpu_idx]
|
|
)
|
|
|
|
|
|
def _SyncParams(devices, model, net, unique_param_names=None):
|
|
if unique_param_names is None:
|
|
unique_param_names = model._param_names
|
|
|
|
for param in unique_param_names:
|
|
_Broadcast(devices, model, net, param)
|
|
|
|
|
|
def _AddDistributedParameterSync(
|
|
devices,
|
|
model,
|
|
init_net,
|
|
net,
|
|
rendezvous,
|
|
uniq_param_names=None,
|
|
):
|
|
if uniq_param_names is None:
|
|
uniq_param_names = model._param_names
|
|
|
|
device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0])
|
|
|
|
# ITER is in CPU scope :(
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
comm_world = init_net.CreateCommonWorld(
|
|
rendezvous['kv_handler'],
|
|
"iter_cw",
|
|
name=net.Proto().name + ".iter_cw_op",
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
)
|
|
net.Broadcast(
|
|
inputs=[comm_world, "gpu_{}/ITER".format(devices[0])],
|
|
outputs=["gpu_{}/ITER".format(devices[0])],
|
|
engine=rendezvous['engine'],
|
|
)
|
|
|
|
for param_name in sorted(uniq_param_names):
|
|
param = model._device_grouped_blobs[param_name][devices[0]]
|
|
|
|
with core.DeviceScope(device_opt):
|
|
param_cpu = net.CopyGPUToCPU(param, str(param) + "cpu")
|
|
|
|
with core.DeviceScope(core.DeviceOption(caffe2_pb2.CPU)):
|
|
comm_world = init_net.CreateCommonWorld(
|
|
rendezvous['kv_handler'],
|
|
"{}_cw".format(param_name),
|
|
name=net.Proto().name + ".{}_cw_op".format(param_name),
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
)
|
|
|
|
# Temp: copy to CPU
|
|
net.Broadcast(
|
|
inputs=[comm_world, param_cpu],
|
|
outputs=[param_cpu],
|
|
engine=rendezvous['engine'],
|
|
)
|
|
with core.DeviceScope(device_opt):
|
|
net.CopyCPUToGPU(param_cpu, param)
|
|
|
|
|
|
def _AllReduceGradients(devices, model, rendezvous):
|
|
if rendezvous is None:
|
|
_AllReduceGradientsSingleHost(devices, model)
|
|
else:
|
|
_AllReduceGradientsDistributed(devices, model, rendezvous)
|
|
|
|
|
|
def _AllReduceGradientsDistributed(
|
|
devices,
|
|
model,
|
|
rendezvous,
|
|
):
|
|
num_workers = model.net.Proto().num_workers
|
|
assert num_workers > 1, "Please specify more than 1 worker"
|
|
all_reduce_engine = rendezvous['engine']
|
|
|
|
# Make list of gradients in reverse order
|
|
reverse_ordered_grads = _GetReverseOrderedGrads(model)
|
|
|
|
# Step 1: sum gradients from local GPUs to master GPU
|
|
master_device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0])
|
|
reducing_device_opt = master_device_opt
|
|
if all_reduce_engine == "RDMA_TCP":
|
|
reducing_device_opt = core.DeviceOption(caffe2_pb2.CPU, 0)
|
|
|
|
# We need to specify a partial order using control_input to
|
|
# ensure progress (since all machines need to do same all reduces
|
|
# in parallel)
|
|
num_controls = min(4, num_workers - 1)
|
|
|
|
cyclical_controls = []
|
|
counter = 0
|
|
nccl_control_blob = None
|
|
|
|
# Note: sorted order to ensure each host puts the operators in
|
|
# same order.
|
|
for grad_name in reverse_ordered_grads:
|
|
master_grad = model._device_grouped_blobs[grad_name][devices[0]]
|
|
grads_group = model._device_grouped_blobs[grad_name].values()
|
|
|
|
assert master_grad in grads_group
|
|
|
|
# Remark: NCCLReduce does not support in-place modifications
|
|
# so we need a temporary gradient blob
|
|
reduced_grad = str(master_grad) + "_red"
|
|
|
|
with core.DeviceScope(master_device_opt):
|
|
model.ConstantFill(master_grad, reduced_grad, value=0.0)
|
|
|
|
# Temp fix since NCCLReduce does not work
|
|
model.net.NCCLAllreduce(
|
|
grads_group,
|
|
grads_group,
|
|
control_input=nccl_control_blob,
|
|
)
|
|
nccl_control_blob = grads_group[0]
|
|
model.net.Copy(master_grad, reduced_grad)
|
|
|
|
# RDMA_TCP works only on CPU context, so we need a temporary
|
|
# cpu-bound scratch blob.
|
|
if all_reduce_engine == "RDMA_TCP":
|
|
with core.DeviceScope(reducing_device_opt):
|
|
model.param_init_net.ConstantFill(
|
|
[], reduced_grad + "cpu", shape=[1], value=0.0
|
|
)
|
|
with core.DeviceScope(master_device_opt):
|
|
# Hack to ensure the cpu-scratch blob is initialized
|
|
# prior to running the net.
|
|
model.param_init_net.CopyGPUToCPU(
|
|
str(master_grad).replace("_grad", ""), reduced_grad + "cpu"
|
|
)
|
|
model.net.CopyGPUToCPU(reduced_grad, reduced_grad + "cpu")
|
|
reduced_grad = reduced_grad + "cpu"
|
|
|
|
control_input = None if len(cyclical_controls) < num_controls \
|
|
else cyclical_controls[counter % num_controls]
|
|
|
|
with core.DeviceScope(reducing_device_opt):
|
|
# Step 2: allreduce between all hosts, between master GPUs
|
|
comm_world = model.param_init_net.CreateCommonWorld(
|
|
rendezvous['kv_handler'],
|
|
"{}_cw".format(grad_name),
|
|
name="{}_cw_op".format(grad_name),
|
|
size=rendezvous['num_shards'],
|
|
rank=rendezvous['shard_id'],
|
|
engine=rendezvous['engine'],
|
|
)
|
|
model.net.Allreduce(
|
|
inputs=[comm_world, reduced_grad],
|
|
outputs=[reduced_grad],
|
|
engine=all_reduce_engine,
|
|
control_input=control_input,
|
|
)
|
|
|
|
if reducing_device_opt != master_device_opt:
|
|
with core.DeviceScope(master_device_opt):
|
|
model.net.CopyCPUToGPU(reduced_grad, master_grad)
|
|
else:
|
|
with core.DeviceScope(master_device_opt):
|
|
model.net.Copy(reduced_grad, master_grad)
|
|
|
|
if len(cyclical_controls) < num_controls:
|
|
cyclical_controls.append(reduced_grad)
|
|
else:
|
|
cyclical_controls[counter % num_controls] = reduced_grad
|
|
|
|
counter += 1
|
|
|
|
# Step 3: broadcast locally
|
|
_Broadcast(devices, model, model.net, grad_name)
|
|
|
|
|
|
def _AllReduceGradientsSingleHost(devices, model):
|
|
"""Performs NCCL AllReduce to distribute gradients to all the GPUs."""
|
|
|
|
if len(devices) == 1:
|
|
return
|
|
|
|
# Gradients in reverse order
|
|
reverse_ordered_grads = _GetReverseOrderedGrads(model)
|
|
|
|
# Now we need to Allreduce gradients on all the GPUs.
|
|
# Pick GPU #0 as a master GPU.
|
|
master_device_opt = core.DeviceOption(caffe2_pb2.CUDA, devices[0])
|
|
last_out = None
|
|
|
|
for grad_name in reverse_ordered_grads:
|
|
with core.DeviceScope(master_device_opt):
|
|
# Group by grads for reduce.
|
|
grads_group = model._device_grouped_blobs[grad_name].values()
|
|
assert len(grads_group) == len(devices), \
|
|
"Each GPU from {}, should have a copy of {}.".format(
|
|
devices, grad_name)
|
|
model.NCCLAllreduce(
|
|
grads_group,
|
|
grads_group,
|
|
control_input=last_out,
|
|
)
|
|
# last_out is used to serialize the execution of nccls
|
|
last_out = grads_group[0]
|
|
|
|
|
|
def _BroadcastComputedParams(devices, model, rendezvous):
|
|
if rendezvous is None:
|
|
_BroadcastComputedParamsSingleHost(devices, model)
|
|
else:
|
|
_BroadcastComputedParamsDistributed(devices, model, rendezvous)
|
|
|
|
|
|
def _BroadcastComputedParamsDistributed(
|
|
devices,
|
|
model,
|
|
rendezvous,
|
|
):
|
|
_BroadcastComputedParamsSingleHost(devices, model)
|
|
log.warn("Distribetud computed params all-reduce not implemented yet")
|
|
|
|
|
|
def _BroadcastComputedParamsSingleHost(devices, model):
|
|
'''
|
|
Average computed params over all devices
|
|
'''
|
|
if len(devices) == 1:
|
|
return
|
|
|
|
for param_name in model._computed_param_names:
|
|
# Copy from master to others -- averaging would be perhaps better,
|
|
# but currently NCCLAllReduce is too prone to deadlock
|
|
_Broadcast(devices, model, model.net, param_name)
|
|
|
|
|
|
def _GetReverseOrderedGrads(model):
|
|
'''
|
|
Returns the gradients in reverse order (namespace stripped),
|
|
for the optimal synchronization order.
|
|
'''
|
|
return list(reversed(model._grad_names))
|
|
|
|
|
|
# A helper function to extract a parameter's name
|
|
def stripParamName(param):
|
|
# Format is "a/b/c/d" -> d
|
|
name = str(param)
|
|
sep = scope._NAMESCOPE_SEPARATOR
|
|
return name[name.rindex(sep) + 1:]
|
|
|
|
|
|
def _AnalyzeOperators(model):
|
|
'''
|
|
Look at all the operators and check that they do not cross device scopes
|
|
'''
|
|
for op in model.Proto().op:
|
|
if "NCCL" in op.type or "Copy" in op.type:
|
|
continue
|
|
op_dev = op.device_option
|
|
op_gpu = op_dev.cuda_gpu_id
|
|
namescope = "gpu_{}/".format(op_gpu)
|
|
for inp in list(op.input) + list(op.output):
|
|
if inp.startswith("gpu_") and not inp.startswith(namescope):
|
|
raise Exception(
|
|
"Blob {} of op {}, should have namescope {}. Op: {}".format(
|
|
inp, op.type, "gpu_{}/".format(op_gpu), str(op),
|
|
))
|
|
|
|
|
|
def _GroupByDevice(devices, params):
|
|
'''
|
|
Groups blobs by device, returning a map of [blobname] = {0: BlobRef, 1: ..}.
|
|
Returns ordered dictionary, ensuring the original order.
|
|
'''
|
|
grouped = OrderedDict()
|
|
assert len(params) % len(devices) == 0,\
|
|
"There should be equal number of params per device"
|
|
|
|
num_params_per_device = int(len(params) / len(devices))
|
|
|
|
for i, p in enumerate(params):
|
|
assert isinstance(p, core.BlobReference), \
|
|
"Param {} is not of type BlobReference".format(p)
|
|
|
|
name = stripParamName(p)
|
|
gpuid = devices[i // num_params_per_device]
|
|
assert "gpu_{}/".format(gpuid) in p.GetNameScope(),\
|
|
"Param {} expected to have namescope 'gpu_{}'".format(str(p), gpuid)
|
|
|
|
if name not in grouped:
|
|
grouped[name] = {}
|
|
grouped[name][gpuid] = p
|
|
|
|
# Confirm consistency
|
|
for j, (p, ps) in enumerate(grouped.items()):
|
|
assert \
|
|
len(ps) == len(devices), \
|
|
"Param {} does not have value for each device (only {}: {})".format(
|
|
p, len(ps), ps,
|
|
)
|
|
# Ensure ordering
|
|
assert(ps[devices[0]] == params[j])
|
|
|
|
return grouped
|