pytorch/tools/autograd/gen_python_functions.py
Richard Zou 29bb3f4647 Refactor Tensor::to to call a primitive that is not copy_. (#61458)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61458

Context
-------
functorch is unable to vmap(grad(f)) when f contains a .to
call. This is because .to (when it is not a no-op) decomposes
to .copy_ under grad and the .copy_ is not compatible with vmap.

Fix
 ---
The fix for this is to have all Tensor::to variants call a new operator,
`_to_copy`, that always copies and is a primitive w.r.t. autograd so
that autograd decomposes Tensor::to into a call to `_to_copy`.
(This is related to https://github.com/pytorch/pytorch/issues/60956,
please let me know if you want to bikeshed the naming).

In order to get this done I had to do a bit of refactoring. All of the
`::to` implementations now call `to_impl` which may call `_to_copy`.

Autograd codegen changes
------------------------

The second thing I had to do was modify the autograd codegen. Right now,
autograd assumes that every output is either statically known to be
differentiable or not differentiable at codegen time. `_to_copy` is a
little special because its differentiability depends on the output
dtype. e.g. `torch.randn(3, requires_grad=True).to(torch.long)` is non
differentiable. To get this to work:
- I changed how `output_differentiability` in derivatives.yaml work.
- output_differentiability can now accept "conditions" for each of the
output arguments. A "condition" is some C++ code.
- We currently only support `output_differentiability` with conditions
if there is a single output. This is for convenience and can be changed
in the future.
- I added a new `output_differentiability_conditions` field to
DifferentiabilityInfo. This gets populated in load_derivatives.yaml
- forward-mode and reverse-mode AD take
`output_differentiability_conditions` into account.

Here's how the generated code for `VariableType::_to_copy`
[looks
like](https://gist.github.com/zou3519/93462df4bda1837acee345205b7cc849)
No other autogenerated code gets modified by this PR.

Performance benchmarking
------------------------
- I benchmarked [three
cases that demonstrate overhead](https://gist.github.com/zou3519/5b6985e6906b80eec5a0dd94ed5b6a1a).
- Case A: No-op .to(). Instruction count went from 50223 to 25623. I
have no clue why but this is a good thing.
- Case B: not-no-op .to(). Instruction count went from 665291 to 671961.
This is expected; `_to_copy` adds an additional dispatch.
- Case C: not-no-op .to() forward pass and backward pass. Instruction count
went from 4022841 to 4030057. This PR adds
an additional dispatch to .to() (so there should be one additional
dispatch in the forward pass) so this number looks reasonable.

Test Plan
---------
- test_torch.py has a test_to
- test_cuda.py has test_to*
- test_autograd has tests (test_type_conversions) that exercise the
reverse-mode path
- test_ops.py has some tests (like log_softmax) that exercise the
reverse-mode and forward-mode AD path.
- test_quantization, test_namedtensor all exercise tensor.to as well.

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D29801652

Pulled By: zou3519

fbshipit-source-id: bb01eb1acf3d79d84f284150d1be4be3b4ace351
2021-07-26 13:02:39 -07:00

886 lines
34 KiB
Python

# Generates Python bindings for ATen functions
#
# The bindings are generated as methods on python_variable or functions on the
# torch._C._nn. torch._C._fft, torch._C._linalg or torch._C._special objects.
#
# Code tries to stick to the following rules:
#
# - templates should be colocated with the functions that use them.
# no templates are currently shared between functions, but if that
# happens, maybe put the template with the first one
#
# - don't use environment dictionaries when calling template.substitute().
# pass named arguments directly for everything, otherwise it's much too
# hard to track what's actually being used and by who
#
# - colocate any new hacks/adjustments with existing ones of the same kind.
# ideally in a data structure rather than code if possible. See e.g.
# SCHEMA_DEFAULT_CONVERSION_HACKS, etc.
#
# - similarly, conversions from one format to another should ideally happen
# all at once in a single place.
#
# - no nontrivial nested functions. couple-liners are ok but please no more.
# especially avoid functions that read/write outer variables defined far away.
#
# - raise RuntimeError instead of asserting, and put as much
# information as is available into the message. I.e. no need to
# plumb in new params whose only purpose is to fill out an error
# message, but use what's there
#
from collections import defaultdict
import itertools
import re
import yaml
from .gen_trace_type import should_trace
from tools.codegen.code_template import CodeTemplate
from tools.codegen.api import cpp
from tools.codegen.api.types import CppSignatureGroup
from tools.codegen.api.python import (PythonArgument, PythonSignature,
PythonSignatureDeprecated,
PythonSignatureGroup,
PythonSignatureNativeFunctionPair,
arg_parser_output_exprs,
argument_type_str, cpp_dispatch_exprs,
cpp_dispatch_target,
dispatch_lambda_args,
dispatch_lambda_exprs,
dispatch_lambda_return_str,
has_tensor_options,
namedtuple_fieldnames, signature)
from tools.codegen.gen import cpp_string, parse_native_yaml, FileManager
from tools.codegen.context import with_native_function
from tools.codegen.model import (Argument, BaseOperatorName, NativeFunction,
Type, Variant)
from tools.codegen.utils import split_name_params, YamlLoader
from typing import Dict, Optional, List, Tuple, Set, Sequence, Callable
#
# declarations blocklist
# We skip codegen for these functions, for various reasons.
# Future PRs will categorize this list and eliminate or hoist
# them out of eager-only codegen.
# See https://github.com/pytorch/pytorch/issues/30788
#
# These functions require manual Python bindings or are not exposed to Python
_SKIP_PYTHON_BINDINGS = [
'alias', 'contiguous', 'is_cuda', 'is_sparse', 'is_sparse_csr', 'size', 'stride',
'.*_backward', '.*_backward_(out|input|weight|bias)', '.*_forward',
'.*_forward_out', '_unsafe_view', 'tensor', '_?sparse_coo_tensor.*',
'_?sparse_csr_tensor.*',
'_arange.*', '_range.*', 'linspace.*', 'logspace.*',
'_sparse_add_out', '_sparse_div.*', '_sparse_mul.*', '_sparse_sub.*', '_sparse_dense_add_out',
'index', 'unique_dim_consecutive',
'_cumsum.*', '_cumprod.*', '_sum.*', '_prod.*',
'_th_.*', '_thnn_.*',
'arange.*', 'range.*', '_solve.*', '_inverse.*',
'full(_out)?',
'_cholesky.*', '_triangular_solve.*', '_qr.*', '_symeig.*', '_svd.*',
'slice', 'randint(_out)?',
'item', '_local_scalar_dense', 'to',
'_to_copy',
'copy_sparse_to_sparse_', 'copy_',
'numpy_T', # this needs to be an attribute in Python, not a function
'nonzero(_(out|numpy))?',
'set_data',
'.*_overrideable', # overrideable functions for backend extension
'data', 'is_leaf', 'output_nr', '_version', 'requires_grad_', 'retains_grad', 'set_',
'_fw_primal', 'fake_quantize_per_tensor_affine_cachemask',
'fake_quantize_per_channel_affine_cachemask',
'_reshape_alias',
]
SKIP_PYTHON_BINDINGS = list(map(lambda pattern: re.compile(rf'^{pattern}$'), _SKIP_PYTHON_BINDINGS))
# These function signatures are not exposed to Python. Note that this signature
# list does not support regex.
SKIP_PYTHON_BINDINGS_SIGNATURES = [
'add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor',
'add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)',
'sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor',
'sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)',
'mul.Scalar(Tensor self, Scalar other) -> Tensor',
'mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)',
'div.Scalar(Tensor self, Scalar other) -> Tensor',
'div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)',
]
@with_native_function
def should_generate_py_binding(f: NativeFunction) -> bool:
name = cpp.name(f.func)
for skip_regex in SKIP_PYTHON_BINDINGS:
if skip_regex.match(name):
return False
signature = str(f.func)
for pattern in SKIP_PYTHON_BINDINGS_SIGNATURES:
if pattern == signature:
return False
return True
def get_pycname(name: BaseOperatorName) -> str:
return f'THPVariable_{name}'
def is_noarg(overloads: Sequence[PythonSignatureNativeFunctionPair]) -> bool:
return len(overloads) == 1 and overloads[0].signature.arguments_count() == 0
def is_py_variable_method(f: NativeFunction) -> bool:
return f.python_module is None and Variant.method in f.variants
def is_py_torch_function(f: NativeFunction) -> bool:
return f.python_module is None and Variant.function in f.variants
def is_py_nn_function(f: NativeFunction) -> bool:
return f.python_module == 'nn'
def is_py_fft_function(f: NativeFunction) -> bool:
return f.python_module == 'fft'
def is_py_linalg_function(f: NativeFunction) -> bool:
return f.python_module == 'linalg'
def is_py_special_function(f: NativeFunction) -> bool:
return f.python_module == 'special'
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Main Function
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def gen(out: str, native_yaml_path: str, deprecated_yaml_path: str, template_path: str) -> None:
fm = FileManager(install_dir=out, template_dir=template_path, dry_run=False)
native_functions = parse_native_yaml(native_yaml_path).native_functions
native_functions = list(filter(should_generate_py_binding, native_functions))
methods = load_signatures(native_functions, deprecated_yaml_path, method=True)
create_python_bindings(
fm, methods, is_py_variable_method, None, 'python_variable_methods.cpp', method=True)
functions = load_signatures(native_functions, deprecated_yaml_path, method=False)
create_python_bindings(
fm, functions, is_py_torch_function, 'torch', 'python_torch_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_nn_function, 'torch.nn', 'python_nn_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_fft_function, 'torch.fft', 'python_fft_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_linalg_function, 'torch.linalg', 'python_linalg_functions.cpp', method=False)
create_python_bindings(
fm, functions, is_py_special_function, 'torch.special', 'python_special_functions.cpp', method=False)
def create_python_bindings(
fm: FileManager,
pairs: Sequence[PythonSignatureNativeFunctionPair],
pred: Callable[[NativeFunction], bool],
module: Optional[str],
filename: str,
*,
method: bool,
) -> None:
"""Generates Python bindings to ATen functions"""
py_methods: List[str] = []
py_method_defs: List[str] = []
py_forwards: List[str] = []
grouped: Dict[BaseOperatorName, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
if pred(pair.function):
grouped[pair.function.func.name.name].append(pair)
for name in sorted(grouped.keys(), key=lambda x: str(x)):
overloads = grouped[name]
py_methods.append(method_impl(name, module, overloads, method=method))
py_method_defs.append(method_def(name, module, overloads, method=method))
py_forwards.extend(forward_decls(name, overloads, method=method))
fm.write_with_template(filename, filename, lambda: {
'generated_comment': '@' + f'generated from {fm.template_dir}/{filename}',
'py_forwards': py_forwards,
'py_methods': py_methods,
'py_method_defs': py_method_defs,
})
def load_signatures(
native_functions: List[NativeFunction],
deprecated_yaml_path: str,
*,
method: bool,
skip_deprecated: bool = False,
pyi: bool = False,
) -> Sequence[PythonSignatureNativeFunctionPair]:
@with_native_function
def gen_signature_pairs(f: NativeFunction) -> PythonSignatureNativeFunctionPair:
return PythonSignatureNativeFunctionPair(
signature=signature(f, method=method, pyi=pyi),
function=f,
)
pairs = list(map(gen_signature_pairs, native_functions))
deprecated = load_deprecated_signatures(pairs, deprecated_yaml_path, method=method, pyi=pyi)
return pairs if skip_deprecated else pairs + deprecated
def load_deprecated_signatures(
pairs: Sequence[PythonSignatureNativeFunctionPair],
deprecated_yaml_path: str,
*,
method: bool,
pyi: bool,
) -> List[PythonSignatureNativeFunctionPair]:
# The deprecated.yaml doesn't have complete type information, we need
# find and leverage the original ATen signature (to which it delegates
# the call) to generate the full python signature.
# We join the deprecated and the original signatures using type-only form.
# native function -> type-only signature
@with_native_function
def signature_original(f: NativeFunction) -> str:
# remove inplace suffix but keep outplace suffix
opname = str(f.func.name.name.base)
if f.func.is_out_fn():
opname += '_out'
if f.func.name.name.inplace and pyi:
opname += '_'
args = CppSignatureGroup.from_native_function(f, method=False).signature.arguments()
# Simply ignore TensorOptionsArguments as it does not exist in deprecated.yaml.
types = ', '.join(argument_type_str(a.argument.type)
for a in args if isinstance(a.argument, Argument))
return f'{opname}({types})'
# deprecated -> type-only native signature (according to the call order)
def signature_deprecated(opname: str, params: List[str], call_args: List[str]) -> str:
# create a mapping of parameter name to parameter type
types: Dict[str, str] = {}
for param in params:
if param == '*':
continue
type, name = param.split(' ')
types[name] = type
# if the name in the call is not in the parameter list, assume it's
# a literal Scalar
rearranged_types = ', '.join(types.get(arg, 'Scalar') for arg in call_args)
return f'{opname}({rearranged_types})'
# group the original ATen signatures by type-only signature
grouped: Dict[str, List[PythonSignatureNativeFunctionPair]] = defaultdict(list)
for pair in pairs:
grouped[signature_original(pair.function)].append(pair)
# find matching original signatures for each deprecated signature
results: List[PythonSignatureNativeFunctionPair] = []
with open(deprecated_yaml_path, 'r') as f:
deprecated_defs = yaml.load(f, Loader=YamlLoader)
for deprecated in deprecated_defs:
_, params = split_name_params(deprecated['name'])
aten_name, call_args = split_name_params(deprecated['aten'])
for pair in grouped[signature_deprecated(aten_name, params, call_args)]:
# It uses the types from the original ATen declaration, but the
# ordering and parameter names from the deprecated overload. Any
# default parameter values from the original ATen declaration are
# ignored.
# Deprecated signature might reorder input_args and input_kwargs,
# but never changes output_args nor TensorOptions (if any?),
# so here we only look into these two types of args.
python_sig = pair.signature
src_args: Dict[str, PythonArgument] = {a.name: PythonArgument(
name=a.name,
type=a.type,
default=None,
default_init=None,
) for a in itertools.chain(python_sig.input_args, python_sig.input_kwargs)}
args: List[str] = []
input_args: List[PythonArgument] = []
input_kwargs: List[PythonArgument] = []
kwarg_only = False
for param in params:
if param == '*':
kwarg_only = True
continue
_, param_name = param.split(' ')
args.append(param_name)
if param_name not in src_args:
# output argument
continue
if not kwarg_only:
if not method or param_name != 'self':
input_args.append(src_args[param_name])
else:
input_kwargs.append(src_args[param_name])
results.append(PythonSignatureNativeFunctionPair(
signature=PythonSignatureDeprecated(
name=python_sig.name,
input_args=tuple(input_args),
input_kwargs=tuple(input_kwargs),
output_args=python_sig.output_args,
tensor_options_args=python_sig.tensor_options_args,
method=python_sig.method,
deprecated_args_names=tuple(args),
deprecated_args_exprs=tuple(call_args),
returns=python_sig.returns,
),
function=pair.function,
))
return results
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Named Tuple Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
@with_native_function
def gen_namedtuple_typename_key(f: NativeFunction) -> str:
name = cpp.name(f.func)
fieldnames = namedtuple_fieldnames(f.func.returns)
return '_'.join([name] + fieldnames)
def emit_namedtuple_typedefs(
overloads: Sequence[PythonSignatureNativeFunctionPair]
) -> Tuple[List[str], Dict[str, str]]:
"""
Generate block of named tuple type def inits, and add typeref snippets
to declarations that use them
"""
flddefnames: Dict[str, str] = {} # map from unique field name lists to field def name
flddefs: List[str] = [] # field def declarations
typenames: Dict[str, str] = {} # map from unique name + field name lists to typedef name
typedefs: List[str] = [] # typedef declarations and init code
for overload in overloads:
fieldnames = namedtuple_fieldnames(overload.function.func.returns)
if not fieldnames:
continue
fn_key = '_'.join(fieldnames)
fieldsname = flddefnames.get(fn_key)
if fieldsname is None:
fieldsname = f'NamedTuple_fields{"" if not flddefs else len(flddefs)}'
flddefnames[fn_key] = fieldsname
fields = ', '.join(f'{{"{fn}", ""}}' for fn in fieldnames)
flddefs.append(f"""\
static PyStructSequence_Field {fieldsname}[] = {{ {fields}, {{nullptr}} }};
""")
name = cpp.name(overload.function.func) # use @with_native_function?
tn_key = gen_namedtuple_typename_key(overload.function)
typename = typenames.get(tn_key)
if typename is None:
typename = f'NamedTuple{"" if not typedefs else len(typedefs)}'
typenames[tn_key] = typename
typedefs.append(f"""\
static PyTypeObject {typename};
static bool {typename}_initialized = false;
if (!{typename}_initialized) {{
{typename}_initialized = true;
static PyStructSequence_Desc desc = {{ "torch.return_types.{name}", nullptr, {fieldsname}, {len(fieldnames)} }};
PyStructSequence_InitType(&{typename}, &desc);
{typename}.tp_repr = (reprfunc)torch::utils::returned_structseq_repr;
}}
""")
return flddefs + typedefs, typenames
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Impl Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
# python binding for all overloads of a particular function/method
PY_VARIABLE_METHOD_VARARGS = CodeTemplate(r"""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
switch (_r.idx) {
${dispatch}
}
${method_footer}
}
""")
# handler for a single parsed signature - may be a single overload or
# a pair of overloads that whose signatures only differ in output params
# (plugged into PY_VARIABLE_METHOD_VARARGS as an item in ${dispatch})
PY_VARIABLE_CASE = CodeTemplate("""\
case ${overload_index}: {
${body}
}
""")
# python binding for single-overload function/method
PY_VARIABLE_METHOD_VARARGS_SINGLETON = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args, PyObject* kwargs)
{
${method_header}
static PythonArgParser parser({
${signatures}
}, /*traceable=*/${traceable});
ParsedArgs<${max_args}> parsed_args;
auto _r = parser.parse(${self_}, args, kwargs, parsed_args);
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
# python binding for a method with no args, shortcuts parsing
PY_VARIABLE_METHOD_NOARGS = CodeTemplate("""\
// ${name}
static PyObject * ${pycname}(PyObject* self_, PyObject* args)
{
${method_header}
${check_has_torch_function}
${dispatch}
${method_footer}
}
""")
def method_impl(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate a python binding for all overloads of an op.
"""
pycname = get_pycname(name)
noarg = is_noarg(overloads)
namedtuple_inits, namedtuple_typenames = emit_namedtuple_typedefs(overloads)
method_header = ['HANDLE_TH_ERRORS']
method_header += namedtuple_inits
method_header += [
"const Tensor& self = THPVariable_Unpack(self_);"
] if method else []
method_footer = ([] if noarg else ['Py_RETURN_NONE;']) + ['END_HANDLE_TH_ERRORS']
traceable = 'true' if all(should_trace(o.function) for o in overloads) else 'false'
grouped_overloads: Sequence[PythonSignatureGroup] = group_overloads(overloads)
is_singleton = len(grouped_overloads) == 1
signatures: List[str] = []
dispatch: List[str] = []
for overload_index, overload in enumerate(grouped_overloads):
signature = overload.signature.signature_str()
signatures.append(f'{cpp_string(str(signature))},')
dispatch_body = emit_dispatch_case(overload, namedtuple_typenames)
dispatch.append(
PY_VARIABLE_CASE.substitute(overload_index=overload_index, body=dispatch_body)
if not is_singleton else dispatch_body)
if noarg:
template = PY_VARIABLE_METHOD_NOARGS
elif is_singleton:
template = PY_VARIABLE_METHOD_VARARGS_SINGLETON
else:
template = PY_VARIABLE_METHOD_VARARGS
return template.substitute(
name=name,
pycname=pycname,
method_header=method_header,
max_args=max(map(lambda o: o.signature.arguments_count(), overloads)),
signatures=signatures,
traceable=traceable,
check_has_torch_function=gen_has_torch_function_check(
name=name,
module=module,
noarg=noarg,
method=method,
),
dispatch=dispatch,
method_footer=method_footer,
self_="self_" if method else "nullptr",
)
def gen_has_torch_function_check(
name: BaseOperatorName, module: Optional[str], *, noarg: bool, method: bool
) -> str:
if noarg:
if method:
return f"""\
if(check_has_torch_function(self_)) {{
return handle_torch_function(self_, "{name}");
}}
"""
else:
return ''
self_ = "self_" if method else "nullptr"
namespace = {
"torch": "THPVariableFunctionsModule",
"torch.nn": "THPNNVariableFunctionsModule",
"torch.fft": "THPFFTVariableFunctionsModule",
"torch.linalg": "THPLinalgVariableFunctionsModule",
"torch.special": "THPSpecialVariableFunctionsModule",
}[module] if module else "THPVariableClass"
return f"""\
if(_r.has_torch_function()) {{
return handle_torch_function(_r, {self_}, args, kwargs, {namespace}, "{module or "torch.Tensor"}");
}}
"""
# handler for output/no-output overload pair
PY_VARIABLE_OUT = CodeTemplate("""\
if (_r.isNone(${out_idx})) {
${call_dispatch}
} else {
${call_dispatch_out}
}
""")
def emit_dispatch_case(
overload: PythonSignatureGroup,
namedtuple_typenames: Dict[str, str],
) -> str:
"""
Emit dispatch code for a single parsed signature. This corresponds to either
a single native function, or a pair that differ only in output params. In the
latter case, a single python signature is used for both and dispatching
switches on the presence/absence of passed output args.
"""
if overload.outplace is not None:
# dispatch output and no-output variants, branch on _r.isNone(<out_idx>)
return PY_VARIABLE_OUT.substitute(
out_idx=overload.signature.output_idx(),
call_dispatch=emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames),
call_dispatch_out=emit_single_dispatch(
overload.signature, overload.outplace, namedtuple_typenames),
)
else:
# no-output version only
return emit_single_dispatch(
overload.signature, overload.base, namedtuple_typenames)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Forward Declarations Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def forward_decls(
name: BaseOperatorName,
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> Tuple[str, ...]:
if method:
return ()
pycname = get_pycname(name)
if is_noarg(overloads):
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args);
""",)
else:
return (f"""\
static PyObject * {pycname}(PyObject* self_, PyObject* args, PyObject* kwargs);
""",)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Method Def (Binding Table Entry) Codegen
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def method_def(
name: BaseOperatorName,
module: Optional[str],
overloads: Sequence[PythonSignatureNativeFunctionPair],
*,
method: bool
) -> str:
"""
Generate method def entry.
"""
pycname = get_pycname(name)
if is_noarg(overloads):
pyfunc_cast = ''
flags = 'METH_NOARGS' if method else 'METH_VARARGS | METH_KEYWORDS'
else:
pyfunc_cast = 'castPyCFunctionWithKeywords'
flags = 'METH_VARARGS | METH_KEYWORDS'
if module == "torch":
flags += ' | METH_STATIC'
if name.dunder_method:
# PyMethodDef entry for binary op, throws not implemented error
return f"""\
{{"{name}", {pyfunc_cast}(TypeError_to_NotImplemented_<{pycname}>), {flags}, NULL}},"""
else:
# PyMethodDef entry
return f"""\
{{"{name}", {pyfunc_cast}({pycname}), {flags}, NULL}},"""
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Overload Sorting and Grouping
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def group_overloads(
overloads: Sequence[PythonSignatureNativeFunctionPair],
) -> Sequence[PythonSignatureGroup]:
bases: Dict[str, PythonSignatureNativeFunctionPair] = {}
outplaces: Dict[str, PythonSignatureNativeFunctionPair] = {}
# first group by signature ignoring out arguments
for overload in overloads:
sig = overload.signature.signature_str(skip_outputs=True)
if overload.function.func.is_out_fn():
if sig in outplaces:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {outplaces[sig].function.func}.'
)
outplaces[sig] = overload
else:
if sig in bases:
raise RuntimeError(
f'Found duplicated function definition:\n- {overload.function.func}.\n'
f'Existing definition:\n- {bases[sig].function.func}.'
)
bases[sig] = overload
for sig, out in outplaces.items():
if sig not in bases:
candidates: List[str] = []
for overload in overloads:
if str(overload.function.func.name.name) == str(out.function.func.name.name) \
and not overload.function.func.is_out_fn() \
and not overload.signature.deprecated:
candidates.append(overload.signature.signature_str(skip_outputs=True))
out_sig = out.signature.signature_str()
raise RuntimeError(
f'While identifying overloads, we found an out schema {out_sig} without a corresponding non-out variant. '
f'We expected the non-out variant to have schema: \n- {sig}\nPlease check that you spelled the schema '
'correctly in native_functions.yaml. We discovered the following candidate(s): \n'
+ '\n'.join(f'- {candidate}' for candidate in candidates))
grouped: List[PythonSignatureGroup] = []
for sig, base in bases.items():
outplace = outplaces.get(sig)
grouped.append(PythonSignatureGroup(
# prefer the signature with optional out=... arguments because it's the
# superset that can be used to parse input for both base and outplace.
signature=outplace.signature if outplace is not None else base.signature,
base=base.function,
outplace=outplace.function if outplace is not None else None,
))
return sort_overloads(grouped)
# This function declares a partial order on declarations, and sorts them according
# to its linear extension. This is necessary, because there's some ambiguity in the
# choice of overload, and we want a different order.
#
# See Note[Order of overloads matters]
#
# A few examples of ambiguous python signature pairs.
#
# All parameters have the same type, except one taking Tensor the other taking
# Scalar. A numeric PyObject can be casted into Tensor, and a zero-dim Tensor
# object can be accepted as Scalar type parameter (see python_arg_parser.cpp).
# Therefore, same input arguments might be accepted by either python signature.
# We want to always parse the one taking Tensor first.
#
# bitwise_and(Tensor input, Tensor other, *, Tensor out=None)
# bitwise_and(Tensor input, Scalar other, *, Tensor out=None)
#
# If they have different number of parameters then they are not ambiguous - but
# the difference on output param can be ignored as it's optional.
#
# multiply(Tensor input, Tensor other, *, Tensor out=None)
# multiply(Tensor input, Scalar other)
#
# Both positional args and keyword-only args are considered together.
#
# subtract(Tensor other, *, Scalar alpha=1)
# subtract(Scalar other, Scalar alpha=1)
#
# A few ambiguous cases which it does NOT handle yet.
#
# If there is any difference in other parameters besides the Tensor/Scalar
# difference, then they are not considered ambiguous by this method anymore.
# However, the difference could be too trivial to disambiguate.
#
# foo(Tensor input, Scalar other, Scalar bar)
# foo(Tensor input, Tensor other, double bar)
#
# If they are taking different number of parameters then they are not considered
# ambiguous anymore, even if the difference is only on optional kwargs.
#
# foo(Scalar other, Scalar alpha=1)
# foo(Tensor other, *, Scalar alpha=1, Scalar beta=1)
#
def sort_overloads(
grouped_overloads: Sequence[PythonSignatureGroup]
) -> Sequence[PythonSignatureGroup]:
def is_arg_smaller(t1: Type, t2: Type) -> bool:
return (str(t1) == 'Scalar' and str(t2) == 'Tensor' or
'Dimname' in str(t1) and 'Dimname' not in str(t2) or
# In the discussion https://github.com/pytorch/pytorch/issues/54555 it has been
# discussed why it is important to prioritize int/int? over int[]
str(t1) == 'int[]' and (str(t2) == 'int' or str(t2) == 'int?') or
# TensorList currently throws an error during argument parsing, that's why it needs to be
# last in signature ordering. See discussion: https://github.com/pytorch/pytorch/issues/58087
str(t1) == 'Tensor[]' and str(t2).find("[]") != -1)
def is_smaller(s1: PythonSignature, s2: PythonSignature) -> bool:
"""Returns True if s1 < s2 in the partial order."""
args1, args2 = s1.arguments(skip_outputs=True), s2.arguments(skip_outputs=True)
if len(args1) != len(args2):
return False
# TODO: should use some canonical form instead of 'str(arg.type)' - see comments
# above. The old codegen used the deprecated 'dynamic_type(arg.type)', which
# ignores the optional annotation, i.e. 'Scalar' and 'Scalar?'.
equal = all(arg1.type == arg2.type for arg1, arg2 in zip(args1, args2))
smaller_or_equal = all(str(arg1.type) == str(arg2.type)
or is_arg_smaller(arg1.type, arg2.type)
for arg1, arg2 in zip(args1, args2))
return smaller_or_equal and not equal
# First sort by signature
grouped_overloads = sorted(grouped_overloads, key=lambda x: x.signature.signature_str())
# Construct the relation graph
larger_than: Dict[int, Set[int]] = defaultdict(set)
for i1, overload1 in enumerate(grouped_overloads):
for i2, overload2 in enumerate(grouped_overloads):
if is_smaller(overload1.signature, overload2.signature):
larger_than[i1].add(i2)
if not larger_than:
return list(grouped_overloads)
# Use a topological sort to sort overloads according to the partial order.
N = len(grouped_overloads)
sorted_ids: List[int] = list(filter(lambda x: x not in larger_than, range(N)))
for idx in range(N):
# The size of sorted_ids will grow to N eventually.
i = sorted_ids[idx]
for j in sorted(larger_than.keys()):
larger = larger_than[j]
larger.discard(i)
if not larger:
del larger_than[j]
sorted_ids.append(j)
return list(map(lambda x: grouped_overloads[x], sorted_ids))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#
# Codegen API Integration
#
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
def emit_single_dispatch(
ps: PythonSignature, f: NativeFunction, namedtuple_typenames: Dict[str, str]
) -> str:
"""
Emit dispatch code for a single native function.
"""
@with_native_function
def go(f: NativeFunction) -> str:
# header comments
deprecated = '[deprecated] ' if ps.deprecated else ''
schema_comment = f'// {deprecated}aten::{f.func}'
# dispatch lambda signature
name = cpp.name(f.func)
lambda_formals = ', '.join(map(lambda a: f"{a.type_str} {a.name}",
dispatch_lambda_args(ps, f)))
lambda_return = dispatch_lambda_return_str(f)
# dispatch lambda body
dispatch_callee = cpp_dispatch_target(f)
dispatch_args = ', '.join(cpp_dispatch_exprs(f, python_signature=ps))
# from arg parser outputs to dispatch lambda arguments
parser_outputs = arg_parser_output_exprs(ps, f)
lambda_arg_exprs = dispatch_lambda_exprs(ps, f)
inits = '\n'.join(lambda_arg_exprs.inits)
lambda_args = ', '.join(lambda_arg_exprs.exprs)
# scatter fields
# TODO: Checking `ps.method and ('requires_grad' in parser_outputs)` is a hacky
# solution for enabling the 'requires_grad' argument for tensor methods
# new_full, new_empty, and new_zeros. A much better but more difficult to
# implement solution involves refactoring according to Ed's description here:
# https://github.com/pytorch/pytorch/issues/36455#issuecomment-614767589
need_set_requires_grad = ps.tensor_options_args and (not has_tensor_options(f) or (
ps.method and ('requires_grad' in parser_outputs)))
set_requires_grad = f'.set_requires_grad({parser_outputs["requires_grad"].expr})' \
if need_set_requires_grad else ''
if lambda_return == 'void':
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
{dispatch_callee}({dispatch_args});
}};
dispatch_{name}({lambda_args}){set_requires_grad};
Py_RETURN_NONE;
"""
else:
typename = namedtuple_typenames.get(gen_namedtuple_typename_key(f))
namedtuple_typeref = f'&{typename}, ' if typename is not None else ''
return f"""\
{schema_comment}
{inits}
auto dispatch_{name} = []({lambda_formals}) -> {lambda_return} {{
pybind11::gil_scoped_release no_gil;
return {dispatch_callee}({dispatch_args});
}};
return wrap({namedtuple_typeref}dispatch_{name}({lambda_args}){set_requires_grad});
"""
return go(f)