pytorch/test/dynamo/test_unspec.py
Sean McGovern 297805fd8f Typo fixes for "overridden" in comments and function names (#155944)
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944
Approved by: https://github.com/Skylion007
2025-06-14 03:37:38 +00:00

893 lines
30 KiB
Python

# Owner(s): ["module: dynamo"]
import math
import random
import unittest
import numpy as np
import torch
import torch._dynamo.test_case
import torch._dynamo.testing
import torch.nn.functional as F
from torch._dynamo.comptime import comptime
from torch._dynamo.testing import CompileCounter, CompileCounterWithBackend, same
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_utils import requires_cuda, skipIfWindows
from torch.testing._internal.logging_utils import logs_to_string
# The intention of this test file is you should put test cases specifically
# for assume_static_by_default=False, aka you want to YOLO make everything as
# dynamic as possible. If you want to test the more normal situation where
# you assume static by default, put it in a regular test file and
# test_dynamic_shapes will cover both the YOLO and non-YOLO cases.
@torch._dynamo.config.patch(assume_static_by_default=False)
class UnspecTests(torch._dynamo.test_case.TestCase):
def test_numpy_correctness(self):
def fn(x, y, z):
xy = [x + y, y, False]
np_x = x.numpy()
np_y = y.numpy()
return {
"x": x,
"z": z,
"a": np_y.sum(),
"b": xy,
"c": np_y[0][0] / 68,
"d": np_x.sum(),
"e": np_x + np_y,
}, x + np_y.sum() + z
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
y = torch.ones([2, 2], dtype=torch.int64)
z = np.int64(12)
res1 = fn(x, y, z)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res2 = opt_fn(x, y, z)
self.assertEqual(res1, res2)
def test_no_recompilations(self):
# no recompilations if passing on different numpy int values
def fn(x, y):
return {"a": x + 1, "b": y / 2}
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
for i in range(10):
opt_fn(x, np.int64(i))
self.assertEqual(cnts.frame_count, 1)
self.assertEqual(cnts.op_count, 2)
@requires_cuda
def test_no_recompilations_with_efficient_attention(self):
def fn(q, k, v, attn_mask):
from torch.nn.attention import sdpa_kernel, SDPBackend
from torch.nn.functional import scaled_dot_product_attention
with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
return scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, scale=1.0
)
def make_q_k_v_mask(batch, num_heads, head_dim, seq_len_kv):
from collections import namedtuple
from functools import partial
dtype = torch.float16
device = "cuda"
make_tensor = partial(
torch.rand, device=device, dtype=dtype, requires_grad=True
)
seq_len_q = 64
SdpaShape = namedtuple(
"Sdpa_Shape", ["batch", "num_heads", "seq_len", "head_dim"]
)
query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim))
kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim)
key, value = make_tensor(kv_shape), make_tensor(kv_shape)
mask = torch.randn(
(batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype
)
return query, key, value, mask
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
q, k, v, mask = make_q_k_v_mask(16, 16, 64, 15)
opt_fn(q, k, v, mask)
q, k, v, mask = make_q_k_v_mask(16, 16, 64, 16)
opt_fn(q, k, v, mask)
self.assertEqual(cnts.frame_count, 1)
@unittest.expectedFailure # array scalars decay to 0D arrays
def test_builtin_max_min(self):
# test unspecialized primitive max/min
def fn(x, y, z):
return z + 1, max(x, y), min(x - 4, y)
x = np.int64(12)
y = 10
z = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
res1 = fn(x, y, z)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res2 = opt_fn(x, y, z)
self.assertTrue(same(res1, res2, relax_numpy_equality=True))
def test_feed_random_values_into_graph_only(self):
def fn(shape):
torch.manual_seed(123)
x = torch.randn(shape, device="cpu") * random.randint(30, 100)
return x
shape = [2, 3]
random.seed(1)
res1 = fn(shape)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
random.seed(1)
res2 = opt_fn(shape)
self.assertTrue(same(res1, res2))
def test_random_values_with_graph_break(self):
def fn(x):
r1 = random.random()
y = x + random.uniform(10, 20)
y.sum().item()
r2 = random.randint(2, 18) # no graph output in this frame
y.sum().item()
return y + r1, r2
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
random.seed(1)
res1 = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
# Really annoying intersection of specialization and RandomValueSource
# If we get a RandomValueSource with a single element tensor, we should return a ConstantVariable like other
# unspects... but if we do, we break the bytecode assumptions and guards will not work as we will be referring
# to a name from a source that is not there. If we call .item() and take the wrapped_value out, where we do
# wrapped_value = wrapped_value.item() where we send unspec down to wrap_fx_proxy, this test passes and then
# some models fail on missing codegen.tx.output.random_values_var. If we let the tensor value go into wrap as
# it is, this test fails.
# The real solution here is to rewrite RandomValueSource and all the codegen it does from the ground up.
def test_multiple_consecutive_random_calls_before_graph(self):
def fn(x):
dim1 = random.randrange(start=0, stop=5)
dim2 = random.randrange(start=0, stop=5)
dim3 = random.randrange(start=0, stop=5)
y = torch.rand(dim1, dim2, dim3)
return x + 2, y
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
random.seed(1)
res1 = fn(x)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
def test_compiled_random_calls_are_random(self):
# For compiled functions with random calls,
# it should return different values for every iteration.
# https://github.com/pytorch/pytorch/issues/95425
@torch.compile(backend="eager", fullgraph=True)
def fn(x):
return (x + 1) * random.uniform(0, 1)
res = []
for _ in range(5):
res.append(fn(torch.ones(2)))
for i in range(1, 5):
self.assertFalse(same(res[i - 1], res[i]))
def test_random_call_with_while_loop(self):
def fn(x):
dim1 = random.randrange(start=0, stop=3)
dim2 = dim1
while dim1 == dim2:
dim2 = random.randrange(start=0, stop=3)
return x * 2
x = torch.randn(4)
random.seed(1)
res1 = fn(x)
opt_fn = torch.compile(fn, backend="eager")
random.seed(1)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
random.seed(10)
res1 = fn(x)
random.seed(10)
res2 = opt_fn(x)
self.assertTrue(same(res1, res2))
def test_random_object(self):
# test argument passing, mutation, reconstruction, state correctness
def fn(x, rand2):
r1 = random.randint(1, 9)
r2 = rand2.randint(1, 9)
rand3 = random.Random(42)
r3 = rand3.randint(1, 9)
y = x + r1 + r2 + r3
return y, rand2, rand3
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
random.seed(0)
y_1, rand2_1, rand3_1 = fn(inp, random.Random(12))
state_1 = random.getstate()
random.seed(0)
y_2, rand2_2, rand3_2 = opt_fn(inp, random.Random(12))
state_2 = random.getstate()
self.assertEqual(y_1, y_2)
self.assertEqual(state_1, state_2)
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
def test_random_object_methods(self):
def fn(x, rand1, rand2, rand3):
rand1.seed(42)
rand4 = random.Random(9002)
rand2.setstate(rand4.getstate())
r1 = rand1.random()
r2 = rand2.randint(1, 10)
r3 = rand3.randrange(10)
r4 = rand4.uniform(0, 1)
return x + r1 + r2 + r3 + r4
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
rand1_1 = random.Random(1)
rand2_1 = random.Random(2)
rand3_1 = random.Random(3)
rand1_2 = random.Random(1)
rand2_2 = random.Random(2)
rand3_2 = random.Random(3)
y1 = fn(inp, rand1_1, rand2_1, rand3_1)
y2 = opt_fn(inp, rand1_2, rand2_2, rand3_2)
self.assertEqual(y1, y2)
self.assertEqual(rand1_1.getstate(), rand1_2.getstate())
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
def test_random_object_overridden_methods(self):
# these will result in graph breaks, but we shouldn't crash
def get_rng():
rand1 = random.Random(1)
rand2 = random.Random(2)
orig_random = rand1.random
def custom_random():
return orig_random()
orig_getstate = rand2.getstate
def custom_getstate():
return orig_getstate()
rand1.random = custom_random
rand2.getstate = custom_getstate
return rand1, rand2
def fn(x, rand1, rand2):
r1 = rand1.random()
rand3 = random.Random()
rand3.setstate(rand2.getstate())
r2 = rand3.random()
return x + r1 + r2
inp = torch.randn(3, 3)
opt_fn = torch.compile(fn, backend="eager")
y1 = fn(inp, *get_rng())
y2 = opt_fn(inp, *get_rng())
self.assertEqual(y1, y2)
def test_builtin_getitem(self):
# builtin getitem args[0] is python list and args[1] is unspec
def fn(x, idx):
return (torch.zeros(idx), x[idx], x[idx:])
x = list(range(50))
ref = fn(x, 48) # 48 is unspecialized
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res = opt_fn(x, 48)
self.assertTrue(same(ref, res))
def test_use_and_specialize(self):
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(x, y):
x = x + y
if y == 2:
return x - 1
else:
return x + 1
self.assertTrue(same(fn(torch.tensor([5]), 2), 6))
self.assertTrue(same(fn(torch.tensor([6]), 2), 7))
self.assertTrue(same(fn(torch.tensor([5]), 3), 9))
self.assertTrue(same(fn(torch.tensor([4]), 3), 8))
self.assertEqual(cnt.frame_count, 2)
def test_no_recompiles(self):
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(x, y):
return x + y
self.assertTrue(same(fn(torch.tensor([5]), 100), 105))
self.assertTrue(same(fn(torch.tensor([4]), 200), 204))
self.assertTrue(same(fn(torch.tensor([3]), 300), 303))
self.assertTrue(same(fn(torch.tensor([2]), 400), 402))
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_no_recompiles_prod_backward(self):
# https://github.com/pytorch/pytorch/issues/120608
cnt = CompileCounter()
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
def fn(t):
return torch.prod(t, 3, keepdim=True)
input_shapes = [(8, 10, 3, 2), (8, 3, 5, 2), (8, 4, 8, 2)]
for s in input_shapes:
t1 = torch.randn(s, requires_grad=True)
h_result = fn(t1)
grad = torch.ones_like(h_result)
h_result.backward(grad)
self.assertEqual(cnt.frame_count, 1)
self.assertEqual(cnt.op_count, 1)
def test_unspec_float_precision(self):
def fn(image, scale_factor):
image = torch.nn.functional.interpolate(
image[None],
size=None,
scale_factor=scale_factor,
mode="bilinear",
recompute_scale_factor=True,
align_corners=False,
)[0]
return image.shape
x = torch.rand([3, 427, 640])
scale_factor = 1.873536229133606
ref = fn(x, scale_factor)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch.compile(fn, backend=cnts)
res = opt_fn(x, scale_factor)
self.assertTrue(same(ref, res))
@unittest.expectedFailure # fails as long as numpy scalars are 0D arrays
def test_specializing_numpy_float_in_control_flow(self):
# np.float64 is unspecialized by default,
# but it should be specialized when used in control flow.
def fn(x, y):
if y > 1.0:
return x + 1
else:
return x - 1
x = torch.rand(4)
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
for t in [np.float16, np.float32, np.float64]:
y = t(1.23)
ref = fn(x, y)
res = opt_fn(x, y)
self.assertTrue(same(ref, res))
def test_mark_static_inside(self):
def fn(x):
torch._dynamo.mark_static(x, 0)
comptime.assert_static(x.size(0))
return x + 1
opt_fn = torch.compile(fn, dynamic=True, fullgraph=True)
opt_fn(torch.randn(12, 23))
def test_shape_graph_break(self):
from torch._dynamo.comptime import comptime
def fn(x):
x_shape = x.size()
comptime.graph_break()
return x + torch.randn(x_shape)
x = torch.randn(20)
opt_fn = torch.compile(fn, backend="eager")
opt_fn(x)
def test_isinstance_symint(self):
def fn(x):
assert isinstance(x.size(0), int)
return x * 2
x = torch.randn(20)
opt_fn = torch.compile(fn, backend="eager")
opt_fn(x)
y = torch.randn(30)
torch._dynamo.mark_dynamic(y, 0)
opt_fn(y)
def test_mark_01_dynamic(self):
def fn(x):
return x * 2
x = torch.randn(1)
torch._dynamo.mark_dynamic(x, 0)
opt_fn = torch.compile(fn, backend="eager")
# This will fail to compile a generic kernel, but we should not
# complain about it (mark dynamic will try its best but 0/1
# specialization is allowed)
opt_fn(x)
def test_conv1d_symint_padding(self):
kernel = torch.randn(1, 1, 4)
def func(x):
padding = math.ceil((kernel.shape[-1] + x.shape[-1] % 2) / 2) - 1
out = F.conv1d(x, kernel, padding=padding, stride=2)
return out
opt_func = torch.compile(func)
x = torch.randn(1, 1, 175)
opt_func(x) # passes
x = torch.randn(1, 1, 249)
opt_func(x) # crashes
@torch._dynamo.config.patch("assume_static_by_default", True)
def test_propagate_dynamic_dim(self):
x = torch.randn(20)
torch._dynamo.mark_dynamic(x, 0)
@torch.compile()
def fn(x):
y = x * 2
comptime.graph_break()
z = y * 2
return z
z = fn(x)
self.assertEqual(z._dynamo_weak_dynamic_indices, {0})
def test_rshift_dynamic(self):
def shift_right(tensor: torch.Tensor) -> torch.Tensor:
return (tensor >> 2).to(torch.long)
opt_fn = torch.compile(shift_right, fullgraph=True, dynamic=True)
sample_input = torch.tensor([4, 4, 16, 32], dtype=torch.uint8)
opt_fn(sample_input)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_symfloat_to_tensor(self):
def f1(v):
return torch.tensor([v.item()])
def f2(v):
return torch.tensor([[v.item()], [2.0]])
def f3(v):
return torch.tensor(v.item())
def f4(v):
return torch.tensor((v.item(),))
optimize = torch.compile(backend="aot_eager", fullgraph=True)
r = torch.randn(1)
self.assertEqual(f1(r), optimize(f1)(r))
self.assertEqual(f2(r), optimize(f2)(r))
self.assertEqual(f3(r), optimize(f3)(r))
self.assertEqual(f4(r), optimize(f4)(r))
@skipIfWindows(
msg="AssertionError: The values for attribute 'dtype' do not match: torch.int32 != torch.int64."
)
def test_to_tensor(self):
def f1():
a = np.random.uniform(low=-1, high=1, size=(20, 1))
return torch.tensor([a, a, a, a], dtype=torch.float64, device="cpu")
def f2():
a = torch.tensor([[[123]]])
return torch.tensor([a, a])
def f3():
a = torch.tensor(123)
return torch.tensor([a, a])
def f4():
a = torch.tensor(123)
b = torch.tensor([[[456]]])
return torch.tensor([a, b])
def f5():
a = np.array([1, 2])
return torch.tensor([a, a])
optimize = torch.compile(backend="aot_eager", fullgraph=True)
self.assertEqual(f1().shape, optimize(f1)().shape)
self.assertEqual(f2(), optimize(f2)())
self.assertEqual(f3(), optimize(f3)())
self.assertEqual(f4(), optimize(f4)())
self.assertEqual(f5(), optimize(f5)())
def test_sym_int_conversion(self):
def f(x):
y = x.size(0)
return x * int(y == 0)
opt_fn = torch.compile(f, backend="eager", fullgraph=True)
x = torch.randn(2, 3)
opt_fn(x)
def test_sum_dimlist_spec(self):
def fn(inputs, dim):
return torch.sum(inputs, dim)
inputs = torch.randn(128, 5, 24, 24)
dim = (-1, 1, 0, 2)
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(inputs, dim), fn(inputs, dim))
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_item_max(self):
def fn(x):
return torch.ones(max(x.item(), 1024))
x = torch.tensor([1000])
y = torch.tensor([2000])
compl_fn = torch.compile(fn, backend="eager", fullgraph=True)
self.assertEqual(fn(x), compl_fn(x))
self.assertEqual(fn(y), compl_fn(y))
# https://github.com/pytorch/pytorch/issues/104812
def test_argmin_coerces_symint_to_intlist_spec(self):
def fn(x, dim):
# the python arg parser coerces dim into a vector<int>
return torch.amin(x, dim=dim, keepdim=True)
x = torch.randn(4, 4, 4)
dim = 2
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(x, dim), fn(x, dim))
def test_exponential(self):
def fn(inputs, op_inputs_dict):
res = inputs.exponential_(**op_inputs_dict)
return res
inputs = torch.randn(2, 3, 4)
op_inputs_dict = {"lambd": 10, "generator": None}
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
self.assertEqual(compl_fn(inputs, op_inputs_dict), fn(inputs, op_inputs_dict))
def test_symbol_guard_limit_before_specialize(self):
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, dynamic=True)
def fn(x):
torch._check(x.size(0) != 3)
torch._check(x.size(0) != 4)
torch._check(x.size(0) != 5)
torch._check(x.size(0) != 6)
return x + 2
# Control test
fn(torch.randn(12))
fn(torch.randn(13))
fn(torch.randn(14))
self.assertExpectedInline(cnts.frame_count, """1""")
cnts.frame_count = 0
torch._dynamo.reset()
with torch.fx.experimental._config.patch(
symbol_guard_limit_before_specialize=3
):
fn(torch.randn(12))
fn(torch.randn(13))
fn(torch.randn(14))
self.assertExpectedInline(cnts.frame_count, """3""")
def test_defaults(self):
def g(x, i=8):
comptime.assert_static(i)
return x * i
def fn(x):
return g(x)
inputs = torch.randn(2, 3, 4)
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
self.assertEqual(compl_fn(inputs), fn(inputs))
@torch._dynamo.config.patch(specialize_float=False)
def test_symfloat_no_replacement(self):
# See https://github.com/pytorch/pytorch/pull/139250 for more context
# The high level idea is if we don't want to set a replacement where a
# symbol is on both the right and left side, otherwise we'll end up
# in an infinite self._find recursion.
def fn(t, m):
return 2 * t if m.is_integer() else t
t = torch.tensor([1])
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
self.assertEqual(fn(t, 1.0), compl_fn(t, 1.0))
@torch._dynamo.config.patch(specialize_float=False)
def test_unspec_roundtrip_float_input(self):
def f(x, y):
if y == 5.0:
return x + 2
else:
return x + y
return (x, y)
cf = torch.compile(backend="eager", fullgraph=True)(f)
x = 1.1234567891234568
y = 1.1234567891234569
self.assertAlmostEqual(f(x, y), cf(x, y))
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
def test_unspec_float_input(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
if y == 5.0:
return x + 2
else:
return x + y
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.randn(3)
self.assertEqual(f(x, 2.0), cf(x, 2.0))
self.assertEqual(f(x, 3.0), cf(x, 3.0)) # automatic dynamic kicks in here
self.assertEqual(f(x, 4.0), cf(x, 4.0))
self.assertExpectedInline(cnts.frame_count, """2""") # no recompile
self.assertEqual(f(x, 5.0), cf(x, 5.0))
self.assertExpectedInline(cnts.frame_count, """3""") # guard worked
self.assertEqual(f(x, math.nan), cf(x, math.nan))
self.assertExpectedInline(cnts.frame_count, """4""") # nan always recompiles
@torch._dynamo.config.patch(specialize_float=False, capture_scalar_outputs=True)
def test_unspecialized_float_multiply_precision(self):
dtypes = [torch.bfloat16, torch.float16, torch.float32, torch.float64]
for i, dtype in enumerate(dtypes):
def fn(x, y):
return x * y
cnt = CompileCounterWithBackend("aot_eager")
fn_opt = torch.compile(fn, backend=cnt)
x = torch.randn(5, dtype=dtype, requires_grad=True)
y1 = 1.00048828125
y2 = 1.00048828126
y3 = 1.00048828127
self.assertEqual(fn_opt(x, y1), fn(x, y1))
self.assertEqual(fn_opt(x, y2), fn(x, y2))
self.assertEqual(fn_opt(x, y3), fn(x, y3))
self.assertEqual(cnt.frame_count, 1)
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=False)
def test_unspec_float_input_f64(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
return x + y
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.zeros(3, dtype=torch.float64)
# 17 digits of precision so unrepresentable in float32
flt = 1.2345678901234567
self.assertEqual(f(x, flt), cf(x, flt))
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
def test_unspec_float_output(self):
cnts = torch._dynamo.testing.CompileCounter()
def f(x, y):
return x + 1, y * 2
cf = torch.compile(backend=cnts, fullgraph=True)(f)
x = torch.randn(3)
self.assertEqual(f(x, 3.0), cf(x, 3.0))
self.assertEqual(f(x, 4.0), cf(x, 4.0))
self.assertEqual(f(x, 5.0), cf(x, 5.0))
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_data_dependent_evaluate_expr_graph_break(self):
cnts = torch._dynamo.testing.CompileCounter()
# To ensure that the continuation frame is compiled,
# have to write the test function in this funny way.
# See https://github.com/pytorch/pytorch/issues/111918
def test(y):
if y > 2:
return True
else:
return False
@torch.compile(backend=cnts)
def fn(x):
x = x + 1
y = x.item()
if test(y):
return x * 2
else:
return x * 3
x = torch.tensor([3.0])
fn(x)
self.assertExpectedInline(cnts.frame_count, """2""")
self.assertExpectedInline(cnts.op_count, """4""")
def test_prune_torch_check(self):
log_stream, ctx = logs_to_string("torch._dynamo.output_graph", "graph_code")
@torch.compile(fullgraph=True, dynamic=True, backend="eager")
def f(x, y):
torch._check(y + 5 == 85)
torch._check(x.size(0) == 80)
with ctx():
f(torch.randn(80, 100), 80)
out = "\n".join(log_stream.getvalue().strip().split("\n")[3:]).strip()
self.assertExpectedInline(
out,
"""\
def forward(self):
return ()""",
)
@torch._dynamo.config.patch(capture_scalar_outputs=True)
def test_split_aot_autograd(self):
@torch.compile(backend="aot_eager", fullgraph=True)
def f(x, i):
y, z = i.tolist()
return torch.split(x, [y, z])
print(f(torch.randn(10, requires_grad=True), torch.tensor([7, 3])))
def test_bool_tensor_ctor(self):
cnts = torch._dynamo.testing.CompileCounter()
@torch.compile(backend=cnts, dynamic=True, fullgraph=True)
def f(x):
y = torch.empty((x.size(0) // 13) * 13)
return torch.tensor(y.numel() == 0)
self.assertTrue(f(torch.empty(8)).item())
self.assertFalse(f(torch.empty(13)).item())
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked(self):
class TestModel(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
return x * 2
main_model = TestModel()
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
x1 = torch.rand(3, 5, 4, 8)
x2 = torch.rand(1, 5, 4, 8)
torch._dynamo.decorators.mark_unbacked(x1, 0)
o1_ref = main_model(x1, 2)
o1 = opt_model(x1, 2)
self.assertEqual(o1_ref, o1)
o1_2_ref = main_model(x2, 2)
o1_2 = opt_model(x2, 2)
self.assertEqual(o1_2_ref, o1_2)
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked_hint_consistency(self):
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
x = torch.randn(1)
torch._dynamo.decorators.mark_unbacked(x, 0)
@torch.compile()
def f(x):
if guard_size_oblivious(x.size(0) != 1):
return x + 3
else:
return x + 4
self.assertEqual(f(x), x + 3)
@torch._dynamo.config.patch(error_on_recompile=True)
def test_mark_unbacked_channels_last(self):
class TestModel(torch.nn.Module):
def __init__(
self,
):
super().__init__()
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
return x * 2
main_model = TestModel()
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
x1 = torch.rand(3, 5, 4, 8).to(memory_format=torch.channels_last)
x2 = torch.rand(1, 5, 4, 8).to(memory_format=torch.channels_last)
torch._dynamo.decorators.mark_unbacked(x1, 0)
o1_ref = main_model(x1, 2)
o1 = opt_model(x1, 2)
self.assertEqual(o1_ref, o1)
o1_2_ref = main_model(x2, 2)
o1_2 = opt_model(x2, 2)
self.assertEqual(o1_2_ref, o1_2)
class UnspecTestsDevice(torch._dynamo.test_case.TestCase):
def test_builtin_functions_on_device(self, device):
def fn(x, scaler):
m = torch.nn.ReLU()
m.to(device)
y = m(x) * scaler
return y
x = torch.randn([3, 6], device=device)
scaler = 0.23 # 0.23 is unspecialized
ref = fn(x, scaler)
cnts = torch._dynamo.testing.CompileCounter()
opt_fn = torch._dynamo.optimize(cnts)(fn)
res = opt_fn(x, scaler)
self.assertTrue(same(ref, res))
self.assertEqual(ref.device, res.device)
devices = ["cuda", "hpu"]
instantiate_device_type_tests(UnspecTestsDevice, globals(), only_for=devices)
if __name__ == "__main__":
from torch._dynamo.test_case import run_tests
run_tests()