mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase. Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944 Approved by: https://github.com/Skylion007
893 lines
30 KiB
Python
893 lines
30 KiB
Python
# Owner(s): ["module: dynamo"]
|
|
import math
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
import torch._dynamo.test_case
|
|
import torch._dynamo.testing
|
|
import torch.nn.functional as F
|
|
from torch._dynamo.comptime import comptime
|
|
from torch._dynamo.testing import CompileCounter, CompileCounterWithBackend, same
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_utils import requires_cuda, skipIfWindows
|
|
from torch.testing._internal.logging_utils import logs_to_string
|
|
|
|
|
|
# The intention of this test file is you should put test cases specifically
|
|
# for assume_static_by_default=False, aka you want to YOLO make everything as
|
|
# dynamic as possible. If you want to test the more normal situation where
|
|
# you assume static by default, put it in a regular test file and
|
|
# test_dynamic_shapes will cover both the YOLO and non-YOLO cases.
|
|
|
|
|
|
@torch._dynamo.config.patch(assume_static_by_default=False)
|
|
class UnspecTests(torch._dynamo.test_case.TestCase):
|
|
def test_numpy_correctness(self):
|
|
def fn(x, y, z):
|
|
xy = [x + y, y, False]
|
|
np_x = x.numpy()
|
|
np_y = y.numpy()
|
|
return {
|
|
"x": x,
|
|
"z": z,
|
|
"a": np_y.sum(),
|
|
"b": xy,
|
|
"c": np_y[0][0] / 68,
|
|
"d": np_x.sum(),
|
|
"e": np_x + np_y,
|
|
}, x + np_y.sum() + z
|
|
|
|
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
|
|
y = torch.ones([2, 2], dtype=torch.int64)
|
|
z = np.int64(12)
|
|
res1 = fn(x, y, z)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
res2 = opt_fn(x, y, z)
|
|
self.assertEqual(res1, res2)
|
|
|
|
def test_no_recompilations(self):
|
|
# no recompilations if passing on different numpy int values
|
|
def fn(x, y):
|
|
return {"a": x + 1, "b": y / 2}
|
|
|
|
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
for i in range(10):
|
|
opt_fn(x, np.int64(i))
|
|
self.assertEqual(cnts.frame_count, 1)
|
|
self.assertEqual(cnts.op_count, 2)
|
|
|
|
@requires_cuda
|
|
def test_no_recompilations_with_efficient_attention(self):
|
|
def fn(q, k, v, attn_mask):
|
|
from torch.nn.attention import sdpa_kernel, SDPBackend
|
|
from torch.nn.functional import scaled_dot_product_attention
|
|
|
|
with sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]):
|
|
return scaled_dot_product_attention(
|
|
q, k, v, attn_mask=attn_mask, scale=1.0
|
|
)
|
|
|
|
def make_q_k_v_mask(batch, num_heads, head_dim, seq_len_kv):
|
|
from collections import namedtuple
|
|
from functools import partial
|
|
|
|
dtype = torch.float16
|
|
device = "cuda"
|
|
make_tensor = partial(
|
|
torch.rand, device=device, dtype=dtype, requires_grad=True
|
|
)
|
|
seq_len_q = 64
|
|
SdpaShape = namedtuple(
|
|
"Sdpa_Shape", ["batch", "num_heads", "seq_len", "head_dim"]
|
|
)
|
|
query = make_tensor(SdpaShape(batch, num_heads, seq_len_q, head_dim))
|
|
kv_shape = SdpaShape(batch, num_heads, seq_len_kv, head_dim)
|
|
key, value = make_tensor(kv_shape), make_tensor(kv_shape)
|
|
mask = torch.randn(
|
|
(batch, num_heads, seq_len_q, seq_len_kv), device=device, dtype=dtype
|
|
)
|
|
|
|
return query, key, value, mask
|
|
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
|
|
q, k, v, mask = make_q_k_v_mask(16, 16, 64, 15)
|
|
opt_fn(q, k, v, mask)
|
|
|
|
q, k, v, mask = make_q_k_v_mask(16, 16, 64, 16)
|
|
opt_fn(q, k, v, mask)
|
|
|
|
self.assertEqual(cnts.frame_count, 1)
|
|
|
|
@unittest.expectedFailure # array scalars decay to 0D arrays
|
|
def test_builtin_max_min(self):
|
|
# test unspecialized primitive max/min
|
|
def fn(x, y, z):
|
|
return z + 1, max(x, y), min(x - 4, y)
|
|
|
|
x = np.int64(12)
|
|
y = 10
|
|
z = torch.tensor([[1.0, 2.0], [3.0, 4.0]], dtype=torch.float64)
|
|
res1 = fn(x, y, z)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
res2 = opt_fn(x, y, z)
|
|
self.assertTrue(same(res1, res2, relax_numpy_equality=True))
|
|
|
|
def test_feed_random_values_into_graph_only(self):
|
|
def fn(shape):
|
|
torch.manual_seed(123)
|
|
x = torch.randn(shape, device="cpu") * random.randint(30, 100)
|
|
return x
|
|
|
|
shape = [2, 3]
|
|
random.seed(1)
|
|
res1 = fn(shape)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
random.seed(1)
|
|
res2 = opt_fn(shape)
|
|
|
|
self.assertTrue(same(res1, res2))
|
|
|
|
def test_random_values_with_graph_break(self):
|
|
def fn(x):
|
|
r1 = random.random()
|
|
y = x + random.uniform(10, 20)
|
|
y.sum().item()
|
|
r2 = random.randint(2, 18) # no graph output in this frame
|
|
y.sum().item()
|
|
return y + r1, r2
|
|
|
|
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
|
|
random.seed(1)
|
|
res1 = fn(x)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
random.seed(1)
|
|
res2 = opt_fn(x)
|
|
self.assertTrue(same(res1, res2))
|
|
|
|
# Really annoying intersection of specialization and RandomValueSource
|
|
# If we get a RandomValueSource with a single element tensor, we should return a ConstantVariable like other
|
|
# unspects... but if we do, we break the bytecode assumptions and guards will not work as we will be referring
|
|
# to a name from a source that is not there. If we call .item() and take the wrapped_value out, where we do
|
|
# wrapped_value = wrapped_value.item() where we send unspec down to wrap_fx_proxy, this test passes and then
|
|
# some models fail on missing codegen.tx.output.random_values_var. If we let the tensor value go into wrap as
|
|
# it is, this test fails.
|
|
# The real solution here is to rewrite RandomValueSource and all the codegen it does from the ground up.
|
|
def test_multiple_consecutive_random_calls_before_graph(self):
|
|
def fn(x):
|
|
dim1 = random.randrange(start=0, stop=5)
|
|
dim2 = random.randrange(start=0, stop=5)
|
|
dim3 = random.randrange(start=0, stop=5)
|
|
y = torch.rand(dim1, dim2, dim3)
|
|
return x + 2, y
|
|
|
|
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]])
|
|
random.seed(1)
|
|
res1 = fn(x)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
random.seed(1)
|
|
res2 = opt_fn(x)
|
|
self.assertTrue(same(res1, res2))
|
|
|
|
def test_compiled_random_calls_are_random(self):
|
|
# For compiled functions with random calls,
|
|
# it should return different values for every iteration.
|
|
# https://github.com/pytorch/pytorch/issues/95425
|
|
@torch.compile(backend="eager", fullgraph=True)
|
|
def fn(x):
|
|
return (x + 1) * random.uniform(0, 1)
|
|
|
|
res = []
|
|
for _ in range(5):
|
|
res.append(fn(torch.ones(2)))
|
|
for i in range(1, 5):
|
|
self.assertFalse(same(res[i - 1], res[i]))
|
|
|
|
def test_random_call_with_while_loop(self):
|
|
def fn(x):
|
|
dim1 = random.randrange(start=0, stop=3)
|
|
dim2 = dim1
|
|
while dim1 == dim2:
|
|
dim2 = random.randrange(start=0, stop=3)
|
|
return x * 2
|
|
|
|
x = torch.randn(4)
|
|
random.seed(1)
|
|
res1 = fn(x)
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
random.seed(1)
|
|
res2 = opt_fn(x)
|
|
self.assertTrue(same(res1, res2))
|
|
|
|
random.seed(10)
|
|
res1 = fn(x)
|
|
random.seed(10)
|
|
res2 = opt_fn(x)
|
|
self.assertTrue(same(res1, res2))
|
|
|
|
def test_random_object(self):
|
|
# test argument passing, mutation, reconstruction, state correctness
|
|
def fn(x, rand2):
|
|
r1 = random.randint(1, 9)
|
|
r2 = rand2.randint(1, 9)
|
|
rand3 = random.Random(42)
|
|
r3 = rand3.randint(1, 9)
|
|
|
|
y = x + r1 + r2 + r3
|
|
return y, rand2, rand3
|
|
|
|
inp = torch.randn(3, 3)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
random.seed(0)
|
|
y_1, rand2_1, rand3_1 = fn(inp, random.Random(12))
|
|
state_1 = random.getstate()
|
|
random.seed(0)
|
|
y_2, rand2_2, rand3_2 = opt_fn(inp, random.Random(12))
|
|
state_2 = random.getstate()
|
|
self.assertEqual(y_1, y_2)
|
|
self.assertEqual(state_1, state_2)
|
|
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
|
|
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
|
|
|
|
def test_random_object_methods(self):
|
|
def fn(x, rand1, rand2, rand3):
|
|
rand1.seed(42)
|
|
rand4 = random.Random(9002)
|
|
rand2.setstate(rand4.getstate())
|
|
r1 = rand1.random()
|
|
r2 = rand2.randint(1, 10)
|
|
r3 = rand3.randrange(10)
|
|
r4 = rand4.uniform(0, 1)
|
|
return x + r1 + r2 + r3 + r4
|
|
|
|
inp = torch.randn(3, 3)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
rand1_1 = random.Random(1)
|
|
rand2_1 = random.Random(2)
|
|
rand3_1 = random.Random(3)
|
|
rand1_2 = random.Random(1)
|
|
rand2_2 = random.Random(2)
|
|
rand3_2 = random.Random(3)
|
|
y1 = fn(inp, rand1_1, rand2_1, rand3_1)
|
|
y2 = opt_fn(inp, rand1_2, rand2_2, rand3_2)
|
|
self.assertEqual(y1, y2)
|
|
self.assertEqual(rand1_1.getstate(), rand1_2.getstate())
|
|
self.assertEqual(rand2_1.getstate(), rand2_2.getstate())
|
|
self.assertEqual(rand3_1.getstate(), rand3_2.getstate())
|
|
|
|
def test_random_object_overridden_methods(self):
|
|
# these will result in graph breaks, but we shouldn't crash
|
|
def get_rng():
|
|
rand1 = random.Random(1)
|
|
rand2 = random.Random(2)
|
|
|
|
orig_random = rand1.random
|
|
|
|
def custom_random():
|
|
return orig_random()
|
|
|
|
orig_getstate = rand2.getstate
|
|
|
|
def custom_getstate():
|
|
return orig_getstate()
|
|
|
|
rand1.random = custom_random
|
|
rand2.getstate = custom_getstate
|
|
return rand1, rand2
|
|
|
|
def fn(x, rand1, rand2):
|
|
r1 = rand1.random()
|
|
rand3 = random.Random()
|
|
rand3.setstate(rand2.getstate())
|
|
r2 = rand3.random()
|
|
return x + r1 + r2
|
|
|
|
inp = torch.randn(3, 3)
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
y1 = fn(inp, *get_rng())
|
|
y2 = opt_fn(inp, *get_rng())
|
|
self.assertEqual(y1, y2)
|
|
|
|
def test_builtin_getitem(self):
|
|
# builtin getitem args[0] is python list and args[1] is unspec
|
|
def fn(x, idx):
|
|
return (torch.zeros(idx), x[idx], x[idx:])
|
|
|
|
x = list(range(50))
|
|
ref = fn(x, 48) # 48 is unspecialized
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
res = opt_fn(x, 48)
|
|
self.assertTrue(same(ref, res))
|
|
|
|
def test_use_and_specialize(self):
|
|
cnt = CompileCounter()
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
|
|
def fn(x, y):
|
|
x = x + y
|
|
if y == 2:
|
|
return x - 1
|
|
else:
|
|
return x + 1
|
|
|
|
self.assertTrue(same(fn(torch.tensor([5]), 2), 6))
|
|
self.assertTrue(same(fn(torch.tensor([6]), 2), 7))
|
|
self.assertTrue(same(fn(torch.tensor([5]), 3), 9))
|
|
self.assertTrue(same(fn(torch.tensor([4]), 3), 8))
|
|
self.assertEqual(cnt.frame_count, 2)
|
|
|
|
def test_no_recompiles(self):
|
|
cnt = CompileCounter()
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
|
|
def fn(x, y):
|
|
return x + y
|
|
|
|
self.assertTrue(same(fn(torch.tensor([5]), 100), 105))
|
|
self.assertTrue(same(fn(torch.tensor([4]), 200), 204))
|
|
self.assertTrue(same(fn(torch.tensor([3]), 300), 303))
|
|
self.assertTrue(same(fn(torch.tensor([2]), 400), 402))
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
self.assertEqual(cnt.op_count, 1)
|
|
|
|
def test_no_recompiles_prod_backward(self):
|
|
# https://github.com/pytorch/pytorch/issues/120608
|
|
cnt = CompileCounter()
|
|
|
|
@torch.compile(backend=cnt, fullgraph=True, dynamic=True)
|
|
def fn(t):
|
|
return torch.prod(t, 3, keepdim=True)
|
|
|
|
input_shapes = [(8, 10, 3, 2), (8, 3, 5, 2), (8, 4, 8, 2)]
|
|
for s in input_shapes:
|
|
t1 = torch.randn(s, requires_grad=True)
|
|
h_result = fn(t1)
|
|
grad = torch.ones_like(h_result)
|
|
h_result.backward(grad)
|
|
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
self.assertEqual(cnt.op_count, 1)
|
|
|
|
def test_unspec_float_precision(self):
|
|
def fn(image, scale_factor):
|
|
image = torch.nn.functional.interpolate(
|
|
image[None],
|
|
size=None,
|
|
scale_factor=scale_factor,
|
|
mode="bilinear",
|
|
recompute_scale_factor=True,
|
|
align_corners=False,
|
|
)[0]
|
|
|
|
return image.shape
|
|
|
|
x = torch.rand([3, 427, 640])
|
|
scale_factor = 1.873536229133606
|
|
ref = fn(x, scale_factor)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch.compile(fn, backend=cnts)
|
|
res = opt_fn(x, scale_factor)
|
|
self.assertTrue(same(ref, res))
|
|
|
|
@unittest.expectedFailure # fails as long as numpy scalars are 0D arrays
|
|
def test_specializing_numpy_float_in_control_flow(self):
|
|
# np.float64 is unspecialized by default,
|
|
# but it should be specialized when used in control flow.
|
|
def fn(x, y):
|
|
if y > 1.0:
|
|
return x + 1
|
|
else:
|
|
return x - 1
|
|
|
|
x = torch.rand(4)
|
|
opt_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
for t in [np.float16, np.float32, np.float64]:
|
|
y = t(1.23)
|
|
ref = fn(x, y)
|
|
res = opt_fn(x, y)
|
|
self.assertTrue(same(ref, res))
|
|
|
|
def test_mark_static_inside(self):
|
|
def fn(x):
|
|
torch._dynamo.mark_static(x, 0)
|
|
comptime.assert_static(x.size(0))
|
|
return x + 1
|
|
|
|
opt_fn = torch.compile(fn, dynamic=True, fullgraph=True)
|
|
opt_fn(torch.randn(12, 23))
|
|
|
|
def test_shape_graph_break(self):
|
|
from torch._dynamo.comptime import comptime
|
|
|
|
def fn(x):
|
|
x_shape = x.size()
|
|
comptime.graph_break()
|
|
return x + torch.randn(x_shape)
|
|
|
|
x = torch.randn(20)
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
opt_fn(x)
|
|
|
|
def test_isinstance_symint(self):
|
|
def fn(x):
|
|
assert isinstance(x.size(0), int)
|
|
return x * 2
|
|
|
|
x = torch.randn(20)
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
opt_fn(x)
|
|
y = torch.randn(30)
|
|
torch._dynamo.mark_dynamic(y, 0)
|
|
opt_fn(y)
|
|
|
|
def test_mark_01_dynamic(self):
|
|
def fn(x):
|
|
return x * 2
|
|
|
|
x = torch.randn(1)
|
|
torch._dynamo.mark_dynamic(x, 0)
|
|
opt_fn = torch.compile(fn, backend="eager")
|
|
# This will fail to compile a generic kernel, but we should not
|
|
# complain about it (mark dynamic will try its best but 0/1
|
|
# specialization is allowed)
|
|
opt_fn(x)
|
|
|
|
def test_conv1d_symint_padding(self):
|
|
kernel = torch.randn(1, 1, 4)
|
|
|
|
def func(x):
|
|
padding = math.ceil((kernel.shape[-1] + x.shape[-1] % 2) / 2) - 1
|
|
out = F.conv1d(x, kernel, padding=padding, stride=2)
|
|
return out
|
|
|
|
opt_func = torch.compile(func)
|
|
|
|
x = torch.randn(1, 1, 175)
|
|
opt_func(x) # passes
|
|
x = torch.randn(1, 1, 249)
|
|
opt_func(x) # crashes
|
|
|
|
@torch._dynamo.config.patch("assume_static_by_default", True)
|
|
def test_propagate_dynamic_dim(self):
|
|
x = torch.randn(20)
|
|
torch._dynamo.mark_dynamic(x, 0)
|
|
|
|
@torch.compile()
|
|
def fn(x):
|
|
y = x * 2
|
|
comptime.graph_break()
|
|
z = y * 2
|
|
return z
|
|
|
|
z = fn(x)
|
|
self.assertEqual(z._dynamo_weak_dynamic_indices, {0})
|
|
|
|
def test_rshift_dynamic(self):
|
|
def shift_right(tensor: torch.Tensor) -> torch.Tensor:
|
|
return (tensor >> 2).to(torch.long)
|
|
|
|
opt_fn = torch.compile(shift_right, fullgraph=True, dynamic=True)
|
|
sample_input = torch.tensor([4, 4, 16, 32], dtype=torch.uint8)
|
|
opt_fn(sample_input)
|
|
|
|
@torch._dynamo.config.patch(capture_scalar_outputs=True)
|
|
def test_symfloat_to_tensor(self):
|
|
def f1(v):
|
|
return torch.tensor([v.item()])
|
|
|
|
def f2(v):
|
|
return torch.tensor([[v.item()], [2.0]])
|
|
|
|
def f3(v):
|
|
return torch.tensor(v.item())
|
|
|
|
def f4(v):
|
|
return torch.tensor((v.item(),))
|
|
|
|
optimize = torch.compile(backend="aot_eager", fullgraph=True)
|
|
|
|
r = torch.randn(1)
|
|
|
|
self.assertEqual(f1(r), optimize(f1)(r))
|
|
self.assertEqual(f2(r), optimize(f2)(r))
|
|
self.assertEqual(f3(r), optimize(f3)(r))
|
|
self.assertEqual(f4(r), optimize(f4)(r))
|
|
|
|
@skipIfWindows(
|
|
msg="AssertionError: The values for attribute 'dtype' do not match: torch.int32 != torch.int64."
|
|
)
|
|
def test_to_tensor(self):
|
|
def f1():
|
|
a = np.random.uniform(low=-1, high=1, size=(20, 1))
|
|
return torch.tensor([a, a, a, a], dtype=torch.float64, device="cpu")
|
|
|
|
def f2():
|
|
a = torch.tensor([[[123]]])
|
|
return torch.tensor([a, a])
|
|
|
|
def f3():
|
|
a = torch.tensor(123)
|
|
return torch.tensor([a, a])
|
|
|
|
def f4():
|
|
a = torch.tensor(123)
|
|
b = torch.tensor([[[456]]])
|
|
return torch.tensor([a, b])
|
|
|
|
def f5():
|
|
a = np.array([1, 2])
|
|
return torch.tensor([a, a])
|
|
|
|
optimize = torch.compile(backend="aot_eager", fullgraph=True)
|
|
|
|
self.assertEqual(f1().shape, optimize(f1)().shape)
|
|
self.assertEqual(f2(), optimize(f2)())
|
|
self.assertEqual(f3(), optimize(f3)())
|
|
self.assertEqual(f4(), optimize(f4)())
|
|
self.assertEqual(f5(), optimize(f5)())
|
|
|
|
def test_sym_int_conversion(self):
|
|
def f(x):
|
|
y = x.size(0)
|
|
return x * int(y == 0)
|
|
|
|
opt_fn = torch.compile(f, backend="eager", fullgraph=True)
|
|
x = torch.randn(2, 3)
|
|
opt_fn(x)
|
|
|
|
def test_sum_dimlist_spec(self):
|
|
def fn(inputs, dim):
|
|
return torch.sum(inputs, dim)
|
|
|
|
inputs = torch.randn(128, 5, 24, 24)
|
|
dim = (-1, 1, 0, 2)
|
|
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
|
|
self.assertEqual(compl_fn(inputs, dim), fn(inputs, dim))
|
|
|
|
@torch._dynamo.config.patch(capture_scalar_outputs=True)
|
|
def test_item_max(self):
|
|
def fn(x):
|
|
return torch.ones(max(x.item(), 1024))
|
|
|
|
x = torch.tensor([1000])
|
|
y = torch.tensor([2000])
|
|
compl_fn = torch.compile(fn, backend="eager", fullgraph=True)
|
|
self.assertEqual(fn(x), compl_fn(x))
|
|
self.assertEqual(fn(y), compl_fn(y))
|
|
|
|
# https://github.com/pytorch/pytorch/issues/104812
|
|
def test_argmin_coerces_symint_to_intlist_spec(self):
|
|
def fn(x, dim):
|
|
# the python arg parser coerces dim into a vector<int>
|
|
return torch.amin(x, dim=dim, keepdim=True)
|
|
|
|
x = torch.randn(4, 4, 4)
|
|
dim = 2
|
|
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
|
|
self.assertEqual(compl_fn(x, dim), fn(x, dim))
|
|
|
|
def test_exponential(self):
|
|
def fn(inputs, op_inputs_dict):
|
|
res = inputs.exponential_(**op_inputs_dict)
|
|
return res
|
|
|
|
inputs = torch.randn(2, 3, 4)
|
|
op_inputs_dict = {"lambd": 10, "generator": None}
|
|
compl_fn = torch.compile(fn, dynamic=True, backend="eager", fullgraph=True)
|
|
self.assertEqual(compl_fn(inputs, op_inputs_dict), fn(inputs, op_inputs_dict))
|
|
|
|
def test_symbol_guard_limit_before_specialize(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch.compile(backend=cnts, dynamic=True)
|
|
def fn(x):
|
|
torch._check(x.size(0) != 3)
|
|
torch._check(x.size(0) != 4)
|
|
torch._check(x.size(0) != 5)
|
|
torch._check(x.size(0) != 6)
|
|
return x + 2
|
|
|
|
# Control test
|
|
fn(torch.randn(12))
|
|
fn(torch.randn(13))
|
|
fn(torch.randn(14))
|
|
|
|
self.assertExpectedInline(cnts.frame_count, """1""")
|
|
cnts.frame_count = 0
|
|
|
|
torch._dynamo.reset()
|
|
|
|
with torch.fx.experimental._config.patch(
|
|
symbol_guard_limit_before_specialize=3
|
|
):
|
|
fn(torch.randn(12))
|
|
fn(torch.randn(13))
|
|
fn(torch.randn(14))
|
|
|
|
self.assertExpectedInline(cnts.frame_count, """3""")
|
|
|
|
def test_defaults(self):
|
|
def g(x, i=8):
|
|
comptime.assert_static(i)
|
|
return x * i
|
|
|
|
def fn(x):
|
|
return g(x)
|
|
|
|
inputs = torch.randn(2, 3, 4)
|
|
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
|
|
self.assertEqual(compl_fn(inputs), fn(inputs))
|
|
|
|
@torch._dynamo.config.patch(specialize_float=False)
|
|
def test_symfloat_no_replacement(self):
|
|
# See https://github.com/pytorch/pytorch/pull/139250 for more context
|
|
# The high level idea is if we don't want to set a replacement where a
|
|
# symbol is on both the right and left side, otherwise we'll end up
|
|
# in an infinite self._find recursion.
|
|
def fn(t, m):
|
|
return 2 * t if m.is_integer() else t
|
|
|
|
t = torch.tensor([1])
|
|
compl_fn = torch.compile(fn, dynamic=True, backend="eager")
|
|
self.assertEqual(fn(t, 1.0), compl_fn(t, 1.0))
|
|
|
|
@torch._dynamo.config.patch(specialize_float=False)
|
|
def test_unspec_roundtrip_float_input(self):
|
|
def f(x, y):
|
|
if y == 5.0:
|
|
return x + 2
|
|
else:
|
|
return x + y
|
|
return (x, y)
|
|
|
|
cf = torch.compile(backend="eager", fullgraph=True)(f)
|
|
x = 1.1234567891234568
|
|
y = 1.1234567891234569
|
|
self.assertAlmostEqual(f(x, y), cf(x, y))
|
|
|
|
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
|
|
def test_unspec_float_input(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
def f(x, y):
|
|
if y == 5.0:
|
|
return x + 2
|
|
else:
|
|
return x + y
|
|
|
|
cf = torch.compile(backend=cnts, fullgraph=True)(f)
|
|
|
|
x = torch.randn(3)
|
|
self.assertEqual(f(x, 2.0), cf(x, 2.0))
|
|
self.assertEqual(f(x, 3.0), cf(x, 3.0)) # automatic dynamic kicks in here
|
|
self.assertEqual(f(x, 4.0), cf(x, 4.0))
|
|
self.assertExpectedInline(cnts.frame_count, """2""") # no recompile
|
|
self.assertEqual(f(x, 5.0), cf(x, 5.0))
|
|
self.assertExpectedInline(cnts.frame_count, """3""") # guard worked
|
|
self.assertEqual(f(x, math.nan), cf(x, math.nan))
|
|
self.assertExpectedInline(cnts.frame_count, """4""") # nan always recompiles
|
|
|
|
@torch._dynamo.config.patch(specialize_float=False, capture_scalar_outputs=True)
|
|
def test_unspecialized_float_multiply_precision(self):
|
|
dtypes = [torch.bfloat16, torch.float16, torch.float32, torch.float64]
|
|
for i, dtype in enumerate(dtypes):
|
|
|
|
def fn(x, y):
|
|
return x * y
|
|
|
|
cnt = CompileCounterWithBackend("aot_eager")
|
|
fn_opt = torch.compile(fn, backend=cnt)
|
|
x = torch.randn(5, dtype=dtype, requires_grad=True)
|
|
y1 = 1.00048828125
|
|
y2 = 1.00048828126
|
|
y3 = 1.00048828127
|
|
|
|
self.assertEqual(fn_opt(x, y1), fn(x, y1))
|
|
self.assertEqual(fn_opt(x, y2), fn(x, y2))
|
|
self.assertEqual(fn_opt(x, y3), fn(x, y3))
|
|
self.assertEqual(cnt.frame_count, 1)
|
|
|
|
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=False)
|
|
def test_unspec_float_input_f64(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
cf = torch.compile(backend=cnts, fullgraph=True)(f)
|
|
|
|
x = torch.zeros(3, dtype=torch.float64)
|
|
# 17 digits of precision so unrepresentable in float32
|
|
flt = 1.2345678901234567
|
|
self.assertEqual(f(x, flt), cf(x, flt))
|
|
|
|
@torch._dynamo.config.patch(specialize_float=False, assume_static_by_default=True)
|
|
def test_unspec_float_output(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
def f(x, y):
|
|
return x + 1, y * 2
|
|
|
|
cf = torch.compile(backend=cnts, fullgraph=True)(f)
|
|
x = torch.randn(3)
|
|
|
|
self.assertEqual(f(x, 3.0), cf(x, 3.0))
|
|
self.assertEqual(f(x, 4.0), cf(x, 4.0))
|
|
self.assertEqual(f(x, 5.0), cf(x, 5.0))
|
|
|
|
@torch._dynamo.config.patch(capture_scalar_outputs=True)
|
|
def test_data_dependent_evaluate_expr_graph_break(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
# To ensure that the continuation frame is compiled,
|
|
# have to write the test function in this funny way.
|
|
# See https://github.com/pytorch/pytorch/issues/111918
|
|
def test(y):
|
|
if y > 2:
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
@torch.compile(backend=cnts)
|
|
def fn(x):
|
|
x = x + 1
|
|
y = x.item()
|
|
if test(y):
|
|
return x * 2
|
|
else:
|
|
return x * 3
|
|
|
|
x = torch.tensor([3.0])
|
|
fn(x)
|
|
|
|
self.assertExpectedInline(cnts.frame_count, """2""")
|
|
self.assertExpectedInline(cnts.op_count, """4""")
|
|
|
|
def test_prune_torch_check(self):
|
|
log_stream, ctx = logs_to_string("torch._dynamo.output_graph", "graph_code")
|
|
|
|
@torch.compile(fullgraph=True, dynamic=True, backend="eager")
|
|
def f(x, y):
|
|
torch._check(y + 5 == 85)
|
|
torch._check(x.size(0) == 80)
|
|
|
|
with ctx():
|
|
f(torch.randn(80, 100), 80)
|
|
|
|
out = "\n".join(log_stream.getvalue().strip().split("\n")[3:]).strip()
|
|
self.assertExpectedInline(
|
|
out,
|
|
"""\
|
|
def forward(self):
|
|
return ()""",
|
|
)
|
|
|
|
@torch._dynamo.config.patch(capture_scalar_outputs=True)
|
|
def test_split_aot_autograd(self):
|
|
@torch.compile(backend="aot_eager", fullgraph=True)
|
|
def f(x, i):
|
|
y, z = i.tolist()
|
|
return torch.split(x, [y, z])
|
|
|
|
print(f(torch.randn(10, requires_grad=True), torch.tensor([7, 3])))
|
|
|
|
def test_bool_tensor_ctor(self):
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
|
|
@torch.compile(backend=cnts, dynamic=True, fullgraph=True)
|
|
def f(x):
|
|
y = torch.empty((x.size(0) // 13) * 13)
|
|
return torch.tensor(y.numel() == 0)
|
|
|
|
self.assertTrue(f(torch.empty(8)).item())
|
|
self.assertFalse(f(torch.empty(13)).item())
|
|
|
|
@torch._dynamo.config.patch(error_on_recompile=True)
|
|
def test_mark_unbacked(self):
|
|
class TestModel(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
):
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
|
|
return x * 2
|
|
|
|
main_model = TestModel()
|
|
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
|
|
|
|
x1 = torch.rand(3, 5, 4, 8)
|
|
x2 = torch.rand(1, 5, 4, 8)
|
|
|
|
torch._dynamo.decorators.mark_unbacked(x1, 0)
|
|
|
|
o1_ref = main_model(x1, 2)
|
|
o1 = opt_model(x1, 2)
|
|
self.assertEqual(o1_ref, o1)
|
|
|
|
o1_2_ref = main_model(x2, 2)
|
|
o1_2 = opt_model(x2, 2)
|
|
self.assertEqual(o1_2_ref, o1_2)
|
|
|
|
@torch._dynamo.config.patch(error_on_recompile=True)
|
|
def test_mark_unbacked_hint_consistency(self):
|
|
from torch.fx.experimental.symbolic_shapes import guard_size_oblivious
|
|
|
|
x = torch.randn(1)
|
|
torch._dynamo.decorators.mark_unbacked(x, 0)
|
|
|
|
@torch.compile()
|
|
def f(x):
|
|
if guard_size_oblivious(x.size(0) != 1):
|
|
return x + 3
|
|
else:
|
|
return x + 4
|
|
|
|
self.assertEqual(f(x), x + 3)
|
|
|
|
@torch._dynamo.config.patch(error_on_recompile=True)
|
|
def test_mark_unbacked_channels_last(self):
|
|
class TestModel(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
):
|
|
super().__init__()
|
|
|
|
def forward(self, x: torch.Tensor, val: int) -> torch.Tensor:
|
|
return x * 2
|
|
|
|
main_model = TestModel()
|
|
opt_model = torch.compile(main_model, mode="max-autotune", dynamic=True)
|
|
|
|
x1 = torch.rand(3, 5, 4, 8).to(memory_format=torch.channels_last)
|
|
x2 = torch.rand(1, 5, 4, 8).to(memory_format=torch.channels_last)
|
|
|
|
torch._dynamo.decorators.mark_unbacked(x1, 0)
|
|
|
|
o1_ref = main_model(x1, 2)
|
|
o1 = opt_model(x1, 2)
|
|
self.assertEqual(o1_ref, o1)
|
|
|
|
o1_2_ref = main_model(x2, 2)
|
|
o1_2 = opt_model(x2, 2)
|
|
self.assertEqual(o1_2_ref, o1_2)
|
|
|
|
|
|
class UnspecTestsDevice(torch._dynamo.test_case.TestCase):
|
|
def test_builtin_functions_on_device(self, device):
|
|
def fn(x, scaler):
|
|
m = torch.nn.ReLU()
|
|
m.to(device)
|
|
y = m(x) * scaler
|
|
return y
|
|
|
|
x = torch.randn([3, 6], device=device)
|
|
scaler = 0.23 # 0.23 is unspecialized
|
|
ref = fn(x, scaler)
|
|
cnts = torch._dynamo.testing.CompileCounter()
|
|
opt_fn = torch._dynamo.optimize(cnts)(fn)
|
|
res = opt_fn(x, scaler)
|
|
self.assertTrue(same(ref, res))
|
|
self.assertEqual(ref.device, res.device)
|
|
|
|
|
|
devices = ["cuda", "hpu"]
|
|
instantiate_device_type_tests(UnspecTestsDevice, globals(), only_for=devices)
|
|
|
|
if __name__ == "__main__":
|
|
from torch._dynamo.test_case import run_tests
|
|
|
|
run_tests()
|