pytorch/benchmarks/tensorexpr/benchmark.py
Sean McGovern 297805fd8f Typo fixes for "overridden" in comments and function names (#155944)
This word appears often in class descriptions and is not consistently spelled. Update comments and some function names to use the correct spelling consistently. Facilitates searching the codebase.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155944
Approved by: https://github.com/Skylion007
2025-06-14 03:37:38 +00:00

311 lines
11 KiB
Python

import contextlib
import json
import os
import time
import numpy as np
import torch
from . import tensor_engine
class Benchmark:
def __init__(self, mode, device, dtype):
self.mode = mode
self.deterministic = False
self.device = device
self.dtype = dtype
self.output_type = "stdout"
self.print_ir = False
self.print_kernel = False
if mode == "both":
self.requires_grad = True
elif mode == "fwd":
self.requires_grad = False
else:
raise ValueError(f"invalid mode: {mode}")
self.result_grad = None
self.grad_variables = []
self.engine = tensor_engine.get_engine()
self.engine.reset(device)
# forward all member functions in self.engine to self
for method in dir(self.engine):
if not callable(getattr(self.engine, method)):
continue
# don't forward if this function is overridden here
if hasattr(self, method):
continue
# don't forward if it is a internal function
if method.startswith("_"):
continue
method_engine = getattr(self.engine, method)
setattr(self, method, method_engine)
def forward(self):
"""do one step worth of computation"""
raise ValueError("this method should be reimplemented by subclass")
def check(self):
if not self.deterministic:
return
np.testing.assert_allclose(
self.reference(), self.numpy(self.compute()), atol=1e-2
)
def config(self):
"""returns an array for the current benchmark configs"""
raise ValueError("this method should be reimplemented by subclass")
def desc(self):
"""return the description of the current benchmark"""
config = self.config()
config_str = "_".join([str(x) for x in config])
device = self.device
if "NNC_NUM_THREADS" in os.environ:
num_threads_str = os.environ["NNC_NUM_THREADS"]
device += num_threads_str
return f"{self.engine.mode}: {self.module()}_{self.mode}_{device}_{config_str}"
@staticmethod
def module():
raise ValueError("this method should be reimplemented by subclass")
def memory_workload(self):
raise ValueError("this method should be reimplemented by subclass")
def compute_workload(self):
"""return the number of scalar operations it takes to finish the tensor op"""
return None
@staticmethod
def input_iterable():
"""A benchmark child class should return true if it utilizes the input iter arg"""
return False
def dtype_to_bytes(self):
return torch.tensor(0, dtype=self.dtype).element_size()
@staticmethod
def default_configs():
"""return a list of defualt configs for this benchmark"""
raise ValueError("this method should be reimplemented by subclass")
def is_supported(self):
return True
def rand(self, shape, device=None, dtype=None, requires_grad=False):
v = self.engine.rand(
shape, device=device, dtype=dtype, requires_grad=requires_grad
)
if requires_grad:
self.grad_variables.append(v)
return v
def nchw_rand(self, shape, device=None, requires_grad=False):
v = self.engine.nchw_rand(shape, device=device, requires_grad=requires_grad)
if requires_grad:
self.grad_variables.append(v)
return v
def compute(self):
if self.bm_jit:
return self.bm_jit(*self.inputs)
else:
return self.forward(*self.inputs)
def run(self, args):
self.print_ir = args.print_ir
if args.cuda_fuser == "old":
torch._C._jit_override_can_fuse_on_gpu(True)
if args.print_kernel:
os.environ["PYTORCH_FUSION_DEBUG"] = "1"
return self.run_impl(True)
elif args.cuda_fuser == "te":
torch._C._jit_set_texpr_fuser_enabled(True)
with cuda_pointwise_context(
args.cuda_pointwise_loop_levels,
args.cuda_pointwise_block_count,
args.cuda_pointwise_block_size,
):
return self.run_impl(True)
elif args.cuda_fuser == "nvf":
torch._C._jit_set_nvfuser_enabled(True)
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_bailout_depth(20)
if args.print_kernel:
os.environ["PYTORCH_CUDA_FUSER_DEBUG"] = "1"
return self.run_impl(True)
else:
return self.run_impl(False)
def run_impl(self, use_fuser):
warmups = 10
if self.device == "cuda":
iters = 1000
else:
iters = 10
engine = tensor_engine.get_engine()
self.bm_jit = None
for i in range(warmups + iters):
if i == warmups:
if self.device == "cuda":
engine.sync_cuda()
time_start = time.time()
if i == 0:
if self.jit_mode == "trace" and use_fuser:
self.bm_jit = torch.jit.trace(
self.forward, example_inputs=self.inputs, check_trace=False
)
if callable(getattr(self, "reference", None)):
self.check()
else:
print("Warning: no reference result for ", self.module())
elif i == 1:
# The fusion graph is visible after the first iter is executed
if self.jit_mode == "trace" and use_fuser and self.print_ir:
print(self.bm_jit.graph_for(*self.inputs))
z = self.compute()
if self.mode == "both":
if self.result_grad is None:
self.result_grad = engine.rand_like(z)
engine.backward([z], [self.result_grad], self.grad_variables)
if self.device == "cuda":
engine.sync_cuda()
duration = time.time() - time_start
iter_time = duration / iters
memory_workload = self.memory_workload()
compute_workload = self.compute_workload()
result_dict = {
"desc": self.desc(),
"us": iter_time * 1e6,
"sol": memory_workload["sol"] * self.dtype_to_bytes() / iter_time / 1e9,
"algorithmic": memory_workload["algorithmic"]
* self.dtype_to_bytes()
/ iter_time
/ 1e9,
}
if compute_workload:
result_dict["compute_workload"] = compute_workload / iter_time / 1e9
self.dump_result(result_dict)
def dump_result(self, result_dict):
if self.output_type == "json":
print(json.dumps(result_dict))
elif self.output_type == "stdout":
msg = "{}: {:.2f} us, SOL {:.2f} GB/s, algorithmic {:.2f} GB/s".format(
result_dict["desc"],
result_dict["us"],
result_dict["sol"],
result_dict["algorithmic"],
)
if "compute_workload" in result_dict:
msg += f", compute {result_dict['compute_workload']:.2f} Gops/s"
print(msg)
else:
raise Exception("Unknown output_type " + self.output_type) # noqa: TRY002
@contextlib.contextmanager
def cuda_pointwise_context(loop_levels, block_count, block_size):
if loop_levels:
old_loop_levels = torch._C._jit_get_te_cuda_pointwise_loop_levels()
torch._C._jit_set_te_cuda_pointwise_loop_levels(loop_levels)
if block_count:
old_block_count = torch._C._jit_get_te_cuda_pointwise_block_count()
torch._C._jit_set_te_cuda_pointwise_block_count(block_count)
if block_size:
old_block_size = torch._C._jit_get_te_cuda_pointwise_block_size()
torch._C._jit_set_te_cuda_pointwise_block_size(block_size)
try:
yield
finally:
if loop_levels:
torch._C._jit_set_te_cuda_pointwise_loop_levels(old_loop_levels)
if block_count:
torch._C._jit_set_te_cuda_pointwise_block_count(old_block_count)
if block_size:
torch._C._jit_set_te_cuda_pointwise_block_size(old_block_size)
# Auxiliary class to facilitate dynamic input shape
class DynamicShape:
r"""
An Auxiliary class for dynamic shape benchmarks
Pre-computes input with random shapes and also
modifies the compute method so in each call the
fuser sees a different input tensor shape
"""
# Number of random inputs in an instance
SAMPLE_SIZE = 100
def __init__(self, dynamic_range=1.2):
self._input_samples = []
self._input_sample_index = 0
self._dynamic_range = (
1.0 / dynamic_range if dynamic_range > 1.0 else dynamic_range
)
self._enable_dynamic_shapes = True
# Returns the input test case that current index points to
@property
def inputs(self):
return self._input_samples[self._input_sample_index]
# An inputs assignment actually adds a test case in the class buffer
@inputs.setter
def inputs(self, val):
self._input_samples.append(val)
# Runs normal compute while increment test case index
def compute(self):
super().compute()
self._input_sample_index = (self._input_sample_index + 1) % self.SAMPLE_SIZE
# Defined by benchmark, the benchmark needs to specify the input
# tensor construction in this method, essentially the same way
# a benchmark creates the inputs list in the initializer
def instantiate_input(self):
raise NotImplementedError
# Instantiate random shaped inputs and start the benchmark run
def run(self, args):
# force disable dynamic shape from command line
if args.no_dynamic_shape:
self._enable_dynamic_shapes = False
self.load_inputs()
super().run(args)
# pre-compute inputs so the creations of random tensors
# do not add to the compute time
def load_inputs(self):
for i in range(self.SAMPLE_SIZE - 1):
self.instantiate_input()
# returns a randomized shape
def rand_shape(self, shape):
if not self._enable_dynamic_shapes:
return shape
ratios = np.random.uniform(self._dynamic_range, 1.0, len(shape))
dyn_shape = list(np.multiply(shape, ratios).astype(int))
return dyn_shape
benchmark_classes = []
def register_benchmark_class(benchmark_cls):
benchmark_classes.append(benchmark_cls)