pytorch/torch/distributed/_composable/replicate.py
Chien-Chin Huang 290bfbe01f [DDP][PT2D] Lazy Initialization of DDP Module for Replicate API (#123424)
In order to make replicate work with Meta tensor, we need to do lazy Initialization for the replicate API. This PR impelements the lazy initialization and ensures that replicate still work with the new DDP compilation.

Differential Revision: [D55787340](https://our.internmc.facebook.com/intern/diff/D55787340/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123424
Approved by: https://github.com/yf225
ghstack dependencies: #124421, #124422
2024-04-24 06:30:19 +00:00

248 lines
8.7 KiB
Python

import weakref
from typing import Any, cast, Dict, Iterable, List, Optional, Set, Tuple
import typing_extensions
import torch
import torch.nn as nn
from torch.distributed._composable_state import _State
from torch.nn.parallel import DistributedDataParallel
from .contract import _get_registry, contract
_ROOT_MODULE_PREFIX = ""
class _ReplicateState(_State):
def __init__(self) -> None:
super().__init__()
self.module: nn.Module = nn.ParameterList()
self.has_initialized: bool = False
self._param_list: nn.ParameterList = nn.ParameterList()
# TODO(@fegin): this variable is originally create for testing, we
# should remove this if possible.
self._orig_module = self.module
self._param_names: List[str] = []
self._no_sync: bool = False
self._init_args: Optional[Tuple[Any, ...]] = None
self._init_kwargs: Dict[str, Any] = {}
self._comm_hook_args: List[Any] = []
def _collect_params(
self,
module: nn.Module,
ignored_modules: Set[nn.Module],
ignored_params: Set[nn.Parameter],
prefix: str = _ROOT_MODULE_PREFIX,
) -> None:
# skip if managed by fully_sharded API
if _is_fully_sharded(module):
return
# if a module is ignored, all descendants of the module are ignored.
if module in ignored_modules:
return
recurse_prefix = (
f"{prefix}." if prefix != _ROOT_MODULE_PREFIX else _ROOT_MODULE_PREFIX
)
for n, p in module.named_parameters(recurse=False):
if p not in ignored_params:
self._param_list.append(p)
self._param_names.append(f"{recurse_prefix}{n}")
for name, child_module in module.named_children():
self._collect_params(
child_module,
ignored_modules,
ignored_params,
prefix=f"{recurse_prefix}{name}",
)
@torch._dynamo.disable(recursive=True)
def lazy_init(self) -> None:
self.init(*self._init_args, **self._init_kwargs)
self.register_comm_hook()
self._init_args = tuple()
self._init_kwargs = {}
@torch._dynamo.disable(recursive=True)
def init(
self,
module: nn.Module,
ignored_modules: Set[nn.Module],
**kwargs,
) -> None:
if self.has_initialized:
return
self.has_initialized = True
device_mesh = kwargs.get("device_mesh", None)
self.module = module
ignored_params = {p for m in ignored_modules for p in m.parameters()}
from torch.distributed.tensor.parallel.ddp import _localize_dtensor
_localize_dtensor(module)
self._collect_params(module, ignored_modules, ignored_params)
if "device_id" in kwargs:
# replicate() supports a small usability enhancement where
# user can pass in device_id as a Union[int, torch.device] even for
# CPU devices so users don't have to change code for CPU/GPU runs.
# We derive the right device_ids to feed into DDP to support this.
if kwargs["device_id"] is not None:
device_id = kwargs["device_id"]
# Convert to device_ids that DDP expects.
if isinstance(device_id, torch.device) and device_id.type == "cpu":
# CPU modules receive device_ids None
kwargs["device_ids"] = None
else:
# GPU modules expect device_ids=[cuda_device]
kwargs["device_ids"] = [device_id]
else:
kwargs["device_ids"] = None
kwargs.pop("device_id")
self._ddp = DistributedDataParallel(self._param_list, **kwargs)
# Weakref to the DDP instance is currently only used for testing.
replicate.state(self.module)._ddp_weakref = weakref.ref(self._ddp)
@torch._dynamo.disable(recursive=True)
def register_comm_hook(self) -> None:
for comm_args, comm_kwargs in self._comm_hook_args:
self._ddp.register_comm_hook(*comm_args, **comm_kwargs)
self._comm_hook_args.clear()
def record_init_args(self, *args, **kwargs) -> None:
self._init_args = args
self._init_kwargs = kwargs
def forward_pre_hook(
self, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any]
) -> Any:
if self._init_args or self._init_kwargs:
self.lazy_init()
self._ddp.require_backward_grad_sync = not self._no_sync
return self._ddp._pre_forward(*args, **kwargs)
def forward_post_hook(
self,
module: nn.Module,
input: Tuple[torch.Tensor],
output: torch.Tensor,
) -> torch.Tensor:
return self._ddp._post_forward(output)
def unimplemented_deepcopy(*args: Any, **kwargs: Any) -> typing_extensions.Never:
raise AssertionError(
"DDP does not support deepcopy. Please use state dict for serialization."
)
# Follow the same pattern as FSDP/fully_shard
class DDP:
def __new__(cls, *args, **kwargs):
"""
Override ``__new__`` to remove the DDP class and directly construct
the original class for cases like indexing into a container module.
"""
# Use index 2 since 0 is the dynamically constructed `DDP<...>` class
# and index 1 is the `DDP` class itself
orig_cls = cls.__mro__[2]
return orig_cls.__new__(orig_cls, *args, **kwargs)
def set_requires_gradient_sync(self, requires_gradient_sync: bool) -> None:
"""
Sets if the module should sync gradients. This can be used to implement
gradient accumulation without communication.
Args:
requires_gradient_sync (bool): Whether to reduce gradients for the
module's parameters.
"""
replicate.state(self)._no_sync = not requires_gradient_sync
def register_comm_hook(self, *args, **kwargs) -> None:
replicate.state(self)._comm_hook_args.append((args, kwargs))
@contract(state_cls=_ReplicateState)
def replicate(
module: nn.Module,
ignored_modules: Optional[Iterable[torch.nn.Module]] = None,
**kwargs,
) -> nn.Module:
r"""Replicates a module
Args:
module (torch.nn.Module): module to replicate
Example::
>>> # xdoctest: +REQUIRES(module:torch._C._distributed_c10d)
>>> module = nn.Linear(3, 3)
>>> replicate(module)
"""
torch._C._log_api_usage_once("torch.distributed.replicate")
# TODO(fegin): using kwargs is not a good idea if we would like to make
# replicate a formal API to replace DDP.
if "device_id" in kwargs:
if not isinstance(kwargs["device_id"], (int, torch.device)):
raise RuntimeError(
"Expected device_id to be int or torch.device, "
f"but got {type(kwargs['device_id'])}"
)
if _is_fully_sharded(module):
raise RuntimeError(
"Cannot apply `replicate()` on a Module already managed by `fully_shard`"
)
if ignored_modules is None:
ignored_modules = {}
else:
ignored_modules = set(ignored_modules)
state = cast(_ReplicateState, replicate.state(module))
module.register_forward_pre_hook(state.forward_pre_hook, with_kwargs=True)
device_mesh = kwargs.get("device_mesh", None)
if device_mesh is not None:
from torch.distributed.device_mesh import _mesh_resources
if _mesh_resources.get_parent_mesh(device_mesh) is not None:
# TODO: This is a temporary work around to enable DDP + TP.
# We should do the logic in DDP so that the 2D implementation is
# sound and the state_dict works out of the box.
#
# This won't conflict with what is done in DDP class as the module
# replicate is going to pass is NOT the original module.
from torch.distributed.tensor.parallel.ddp import (
_localize_dtensor,
_reconstruct_dtensor,
)
module.register_forward_pre_hook(_reconstruct_dtensor)
module.register_forward_hook(_localize_dtensor)
module.register_forward_hook(state.forward_post_hook) # type: ignore[arg-type]
state.record_init_args(module, ignored_modules, **kwargs)
# Place DDP leftmost for highest priority in the method resolution order
cls = module.__class__
dct = {"__deepcopy__": unimplemented_deepcopy}
new_cls = type(f"DDP{cls.__name__}", (DDP, cls), dct)
module.__class__ = new_cls
return module
def _is_fully_sharded(module: nn.Module) -> bool:
r"""Check if module is marked with fully_shard."""
registry = _get_registry(module)
if registry is None:
return False
return "fully_shard" in registry