pytorch/test/export/test_safeguard.py
Tugsbayasgalan (Tugsuu) Manlaibaatar 28be47c267 [RELAND][export] Exempt autograd ops for predispatch export (#117448)
Summary: Reland of https://github.com/pytorch/pytorch/pull/116527/files

Test Plan: CI

Differential Revision: D52675324

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117448
Approved by: https://github.com/ydwu4
2024-01-16 19:32:15 +00:00

125 lines
3.6 KiB
Python

# Owner(s): ["module: dynamo"]
import unittest
import torch
import torch._dynamo as torchdynamo
from torch.export import export
from torch.testing._internal.common_utils import run_tests, TestCase
@unittest.skipIf(not torchdynamo.is_dynamo_supported(), "dynamo isn't support")
class TestSafeguard(TestCase):
# If the autograd state doesn't change, dynamo eliminates autograd state manager op and later export can succeed.
# Otherwise, autograd can be preserved in the produced gragh, and export will fail.
def test_global_autograd(self):
def f1(a):
with torch.no_grad():
b = a + a
return b
def f2(a):
with torch.enable_grad():
b = a + a
return b
def f3(a):
with torch.set_grad_enabled(False):
b = a + a
return b
def f4(a):
with torch.set_grad_enabled(True):
b = a + a
return b
a = torch.randn(10)
with torch.no_grad():
export(f1, (a,))
export(f2, (a,))
export(f3, (a,))
export(f4, (a,))
with torch.enable_grad():
export(f2, (a,))
export(f4, (a,))
with self.assertRaisesRegex(
RuntimeError, "Encountered autograd state manager op.*"
):
export(f1, (a,))
with self.assertRaisesRegex(
RuntimeError, "Encountered autograd state manager op.*"
):
export(f3, (a,))
def test_tensor_autograd(self):
# dynamo errors when Tensor.requires_grad_ change the autograd state
def f1(a):
a.requires_grad_(True)
b = a + a
return b
# dynamo errors when Tensor.requires_grad_ change the autograd state
def f2(a):
a.requires_grad_(False)
b = a + a
return b
# dynamo always errors on Tensor.requires_grad
def f3(a):
a.requires_grad = False
b = a + a
return b
export(f1, (torch.randn(10, requires_grad=True),))
export(f2, (torch.randn(10, requires_grad=False),))
with self.assertRaises(RuntimeError):
export(f1, (torch.randn(10, requires_grad=False),))
with self.assertRaises(RuntimeError):
export(f2, (torch.randn(10, requires_grad=True),))
with self.assertRaises(RuntimeError):
export(f3, (torch.randn(10, requires_grad=False),))
def test_global_autograd_exempt_predispatch(self):
def f1(a):
with torch.no_grad():
b = a + a
return b
def f2(a):
with torch.enable_grad():
b = a + a
return b
def f3(a):
with torch.set_grad_enabled(False):
b = a + a
return b
def f4(a):
with torch.set_grad_enabled(True):
b = a + a
return b
a = torch.randn(10)
from torch.export._trace import _export
with torch.no_grad():
_export(f1, (a,), pre_dispatch=True)
_export(f2, (a,), pre_dispatch=True)
_export(f3, (a,), pre_dispatch=True)
_export(f4, (a,), pre_dispatch=True)
with torch.enable_grad():
_export(f1, (a,), pre_dispatch=True)
_export(f2, (a,), pre_dispatch=True)
_export(f3, (a,), pre_dispatch=True)
_export(f4, (a,), pre_dispatch=True)
if __name__ == "__main__":
run_tests()