mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
* Add backward() to Tensor and Variable * Add at:: in front of Tensor * Trying to not move optional to appease windows? * Move implementation into cpp file * Undo some formatting changes
95 lines
2.5 KiB
C++
95 lines
2.5 KiB
C++
#include <catch.hpp>
|
|
|
|
#include <torch/nn/module.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/nn/modules/sequential.h>
|
|
#include <torch/optimizers.h>
|
|
|
|
#include <test/cpp/api/util.h>
|
|
|
|
using namespace torch;
|
|
using namespace torch::nn;
|
|
|
|
bool test_optimizer_xor(Optimizer optim, std::shared_ptr<Sequential> model) {
|
|
float running_loss = 1;
|
|
int epoch = 0;
|
|
while (running_loss > 0.1) {
|
|
int64_t bs = 4;
|
|
auto inp = at::CPU(at::kFloat).tensor({bs, 2});
|
|
auto lab = at::CPU(at::kFloat).tensor({bs});
|
|
for (size_t i = 0; i < bs; i++) {
|
|
const int64_t a = std::rand() % 2;
|
|
const int64_t b = std::rand() % 2;
|
|
const int64_t c = static_cast<uint64_t>(a) ^ static_cast<uint64_t>(b);
|
|
inp[i][0] = a;
|
|
inp[i][1] = b;
|
|
lab[i] = c;
|
|
}
|
|
// forward
|
|
auto y = Var(lab, false);
|
|
std::function<at::Scalar()> closure = [&]() -> at::Scalar {
|
|
optim->zero_grad();
|
|
auto x = model->forward(Var(inp));
|
|
Variable loss = at::binary_cross_entropy(x, y);
|
|
loss.backward();
|
|
return at::Scalar(loss.data());
|
|
};
|
|
|
|
at::Scalar loss = optim->step(closure);
|
|
|
|
running_loss = running_loss * 0.99 + loss.toFloat() * 0.01;
|
|
if (epoch > 3000) {
|
|
return false;
|
|
}
|
|
epoch++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TEST_CASE("optim") {
|
|
std::srand(0);
|
|
setSeed(0);
|
|
auto model = std::make_shared<Sequential>(
|
|
SigmoidLinear(Linear(2, 8).build()), SigmoidLinear(Linear(8, 1).build()));
|
|
|
|
// FLAKY!
|
|
// SECTION("lbfgs") {
|
|
// auto optim = LBFGS(model, 5e-2).max_iter(5).make();
|
|
// REQUIRE(test_optimizer_xor(optim, model));
|
|
// }
|
|
|
|
SECTION("sgd") {
|
|
auto optim =
|
|
SGD(model, 1e-1).momentum(0.9).nesterov().weight_decay(1e-6).make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
SECTION("adagrad") {
|
|
auto optim = Adagrad(model, 1.0).weight_decay(1e-6).lr_decay(1e-3).make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
SECTION("rmsprop_simple") {
|
|
auto optim = RMSprop(model, 1e-1).centered().make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
SECTION("rmsprop") {
|
|
auto optim = RMSprop(model, 1e-1).momentum(0.9).weight_decay(1e-6).make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
|
|
/*
|
|
// This test appears to be flaky, see
|
|
https://github.com/pytorch/pytorch/issues/7288 SECTION("adam") { auto optim =
|
|
Adam(model, 1.0).weight_decay(1e-6).make(); REQUIRE(test_optimizer_xor(optim,
|
|
model));
|
|
}
|
|
*/
|
|
|
|
SECTION("amsgrad") {
|
|
auto optim = Adam(model, 0.1).weight_decay(1e-6).amsgrad().make();
|
|
REQUIRE(test_optimizer_xor(optim, model));
|
|
}
|
|
}
|