pytorch/caffe2/python/ideep/conv_op_test.py
Yinghai Lu 2863d935b9
[Caffe2] Fix of the performance issue of IDEEP (#7503)
* Sketch fix of the performance issue of IDEEP

* Revert CMakefile

* Fix tests

* format

* comments

* Print error

* review comments
2018-05-11 13:43:41 -07:00

60 lines
2.1 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import hypothesis.strategies as st
from hypothesis import given, settings, unlimited
import numpy as np
from caffe2.python import core, workspace
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.ideep_test_util as mu
@unittest.skipIf(not workspace.C.use_ideep, "No IDEEP support.")
class ConvTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(8, 10),
input_channels=st.integers(1, 3),
output_channels=st.integers(1, 5),
batch_size=st.integers(1, 3),
use_bias=st.booleans(),
training_mode=st.booleans(),
group=st.integers(1, 2),
**mu.gcs)
@settings(deadline=None, timeout=unlimited)
def test_convolution(self, stride, pad, kernel, size,
input_channels, output_channels,
batch_size, use_bias, training_mode, group, gc, dc):
training = 1 if training_mode else 0
op = core.CreateOperator(
"Conv",
["X", "w", "b"] if use_bias else ["X", "w"],
["Y"],
stride=stride,
pad=pad,
kernel=kernel,
group=group,
training_mode=training,
)
X = np.random.rand(
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
w = np.random.rand(
output_channels * group, input_channels, kernel, kernel) \
.astype(np.float32) - 0.5
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
inputs = [X, w, b] if use_bias else [X, w]
self.assertDeviceChecks(dc, op, inputs, [0])
if training_mode:
for i in range(len(inputs)):
self.assertGradientChecks(gc, op, inputs, i, [0], threshold=0.01)
if __name__ == "__main__":
unittest.main()