mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
This PR adds temporary declarations for `torch::k{name}` enums, so that we can submit a PR to rename the enum usage in torchvision. And then, after the changes to torchvision is done, we can remove the temporary declarations in https://github.com/pytorch/pytorch/pull/26837 to officially move over to using `c10::variant` for enums.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27051
Differential Revision: D17672220
Pulled By: yf225
fbshipit-source-id: 4ae77634e8c7efa3404698f7c1a69177cbb5dab3
132 lines
4.1 KiB
C++
132 lines
4.1 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/nn/init.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/nn/modules/conv.h>
|
|
|
|
#include <test/cpp/api/init_baseline.h>
|
|
#include <test/cpp/api/support.h>
|
|
|
|
#include <functional>
|
|
#include <vector>
|
|
|
|
void check_exact_values(
|
|
const std::vector<torch::Tensor>& parameters,
|
|
const std::vector<std::vector<torch::Tensor>>& expected_parameters) {
|
|
ASSERT_EQ(parameters.size(), expected_parameters.size());
|
|
|
|
for (size_t i = 0; i < parameters.size(); i++) {
|
|
auto layerParameters = parameters[i];
|
|
auto expectedLayerParameters = expected_parameters[i];
|
|
|
|
if (layerParameters.size(0) != expectedLayerParameters.size()) {
|
|
std::cout << "layer #" << i
|
|
<< " layerParameters size: " << layerParameters.size(0)
|
|
<< " != "
|
|
<< " expectedLayerParameters size: "
|
|
<< expectedLayerParameters.size() << std::endl;
|
|
ASSERT_TRUE(false);
|
|
}
|
|
|
|
for (size_t p = 0; p < layerParameters.size(0); p++) {
|
|
auto tensor = layerParameters[p];
|
|
auto expectedTensor = expectedLayerParameters[p];
|
|
|
|
if (!tensor.allclose(expectedTensor, /*rtol=*/1e-3, /*atol=*/5e-4)) {
|
|
std::cout << "layer " << i << ": " << tensor << " != " << expectedTensor
|
|
<< " (parameter " << p << ")" << std::endl;
|
|
ASSERT_TRUE(false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void check_initializer_against_baseline(
|
|
std::function<void(torch::Tensor)> initializer,
|
|
std::vector<std::vector<torch::Tensor>> expected) {
|
|
torch::manual_seed(0);
|
|
|
|
auto layer1 = torch::nn::Linear(7, 15);
|
|
initializer(layer1->weight);
|
|
layer1->to(torch::kFloat64);
|
|
|
|
auto layer2 = torch::nn::Linear(15, 15);
|
|
initializer(layer2->weight);
|
|
layer2->to(torch::kFloat64);
|
|
|
|
auto layer3 = torch::nn::Linear(15, 2);
|
|
initializer(layer3->weight);
|
|
layer3->to(torch::kFloat64);
|
|
|
|
auto parameters = std::vector<torch::Tensor>{
|
|
layer1->weight,
|
|
layer2->weight,
|
|
layer3->weight,
|
|
};
|
|
|
|
check_exact_values(parameters, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_XavierUniform) {
|
|
auto expected = expected_parameters::Xavier_Uniform();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::xavier_uniform_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_XavierNormal) {
|
|
auto expected = expected_parameters::Xavier_Normal();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::xavier_normal_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_KaimingNormal) {
|
|
auto expected = expected_parameters::Kaiming_Normal();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::kaiming_normal_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, ProducesPyTorchValues_KaimingUniform) {
|
|
auto expected = expected_parameters::Kaiming_Uniform();
|
|
auto initializer = [](torch::Tensor tensor) {
|
|
torch::nn::init::kaiming_uniform_(tensor);
|
|
};
|
|
check_initializer_against_baseline(initializer, expected);
|
|
}
|
|
|
|
TEST(InitTest, CanInitializeTensorThatRequiresGrad) {
|
|
auto tensor = torch::empty({3, 4}, torch::requires_grad());
|
|
ASSERT_THROWS_WITH(
|
|
tensor.fill_(1),
|
|
"a leaf Variable that requires grad "
|
|
"has been used in an in-place operation");
|
|
ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item<int32_t>(), 12);
|
|
}
|
|
|
|
TEST(InitTest, CalculateGainWithTanh) {
|
|
double gain =
|
|
torch::nn::init::calculate_gain(torch::kTanh);
|
|
ASSERT_DOUBLE_EQ(gain, 5.0 / 3.0);
|
|
}
|
|
|
|
TEST(InitTest, CalculateGainWithRelu) {
|
|
double gain =
|
|
torch::nn::init::calculate_gain(torch::kReLU);
|
|
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0));
|
|
}
|
|
|
|
TEST(InitTest, CalculateGainWithLeakyRelu) {
|
|
double gain =
|
|
torch::nn::init::calculate_gain(torch::kLeakyReLU);
|
|
ASSERT_DOUBLE_EQ(gain, std::sqrt(2.0 / (1 + pow(0.01, 2))));
|
|
}
|
|
|
|
TEST(InitTest, CanInitializeCnnWithOrthogonal) {
|
|
torch::nn::Conv2d conv_layer(torch::nn::Conv2dOptions(3, 2, 3).stride(2));
|
|
torch::nn::init::orthogonal_(conv_layer->named_parameters()["weight"]);
|
|
} |