pytorch/caffe2/python/normalizer_context.py
Bugra Akyildiz 27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00

39 lines
1.0 KiB
Python

# @package regularizer_context
# Module caffe2.python.normalizer_context
from caffe2.python import context
from caffe2.python.modifier_context import (
ModifierContext, UseModifierBase)
@context.define_context(allow_default=True)
class NormalizerContext(ModifierContext):
"""
provide context to allow param_info to have different normalizers
"""
def has_normalizer(self, name):
return self._has_modifier(name)
def get_normalizer(self, name):
assert self.has_normalizer(name), (
"{} normalizer is not provided!".format(name))
return self._get_modifier(name)
class UseNormalizer(UseModifierBase):
'''
context class to allow setting the current context.
Example usage with layer:
normalizers = {'norm1': norm1, 'norm2': norm2}
with UseNormalizer(normalizers):
norm = NormalizerContext.current().get_normalizer('norm1')
layer(norm=norm)
'''
def _context_class(self):
return NormalizerContext