mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports: ```2to3 -f future -w caffe2``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033 Reviewed By: seemethere Differential Revision: D23808648 Pulled By: bugra fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
91 lines
2.6 KiB
Python
91 lines
2.6 KiB
Python
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings
|
|
import numpy as np
|
|
from caffe2.proto import caffe2_pb2
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_mkldnn, "No MKLDNN support.")
|
|
class ShapeTest(hu.HypothesisTestCase):
|
|
@given(n=st.integers(1, 128),
|
|
c=st.integers(1, 128),
|
|
h=st.integers(1, 128),
|
|
w=st.integers(1, 128),
|
|
**mu.gcs)
|
|
@settings(max_examples=10, deadline=None)
|
|
def test_shape(self, n, c, h, w, gc, dc):
|
|
op0 = core.CreateOperator(
|
|
"Shape",
|
|
["X0"],
|
|
["Y0"],
|
|
device_option=dc[0]
|
|
)
|
|
op1 = core.CreateOperator(
|
|
"Shape",
|
|
["X1"],
|
|
["Y1"],
|
|
device_option=dc[1]
|
|
)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
|
|
workspace.FeedBlob('X0', X, dc[0])
|
|
workspace.FeedBlob('X1', X, dc[1])
|
|
workspace.RunOperatorOnce(op0)
|
|
workspace.RunOperatorOnce(op1)
|
|
Y0 = workspace.FetchBlob('Y0')
|
|
Y1 = workspace.FetchBlob('Y1')
|
|
|
|
if not np.allclose(Y0, Y1, atol=0, rtol=0):
|
|
print(Y1.flatten())
|
|
print(Y0.flatten())
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
@given(n=st.integers(1, 128),
|
|
c=st.integers(1, 128),
|
|
h=st.integers(1, 128),
|
|
w=st.integers(1, 128),
|
|
axes=st.lists(st.integers(0, 3), min_size=1, max_size=3),
|
|
**mu.gcs)
|
|
@settings(max_examples=10, deadline=None)
|
|
def test_shape_with_axes(self, n, c, h, w, axes, gc, dc):
|
|
axes = list(set(axes)).sort()
|
|
op0 = core.CreateOperator(
|
|
"Shape",
|
|
["X0"],
|
|
["Y0"],
|
|
axes = axes,
|
|
device_option=dc[0]
|
|
)
|
|
op1 = core.CreateOperator(
|
|
"Shape",
|
|
["X1"],
|
|
["Y1"],
|
|
axes = axes,
|
|
device_option=dc[1]
|
|
)
|
|
X = np.random.rand(n, c, h, w).astype(np.float32) - 0.5
|
|
workspace.FeedBlob('X0', X, dc[0])
|
|
workspace.FeedBlob('X1', X, dc[1])
|
|
workspace.RunOperatorOnce(op0)
|
|
workspace.RunOperatorOnce(op1)
|
|
Y0 = workspace.FetchBlob('Y0')
|
|
Y1 = workspace.FetchBlob('Y1')
|
|
|
|
if not np.allclose(Y0, Y1, atol=0, rtol=0):
|
|
print(Y1.flatten())
|
|
print(Y0.flatten())
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|