mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Add operators based-on IDEEP interfaces Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Enable IDEEP as a caffe2 device Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Add test cases for IDEEP ops Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Add IDEEP as a caffe2 submodule Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Skip test cases if no IDEEP support Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Correct cmake options for IDEEP Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Add dependences on ideep libraries Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Fix issues in IDEEP conv ops and etc. Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Move ideep from caffe2/ideep to caffe2/contrib/ideep Signed-off-by: Gu Jinghui <jinghui.gu@intel.com> * Update IDEEP to fix cmake issue Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Fix cmake issue caused by USE_MKL option Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Correct comments in MKL cmake file Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>
35 lines
1.0 KiB
Python
35 lines
1.0 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
@unittest.skipIf(not workspace.C.use_ideep, "No IDEEP support.")
|
|
class SoftmaxTest(hu.HypothesisTestCase):
|
|
@given(size=st.integers(8, 20),
|
|
input_channels=st.integers(1, 3),
|
|
batch_size=st.integers(1, 3),
|
|
inplace=st.booleans(),
|
|
**mu.gcs)
|
|
def test_softmax(self, size, input_channels, batch_size, inplace, gc, dc):
|
|
op = core.CreateOperator(
|
|
"Softmax",
|
|
["X"],
|
|
["Y"],
|
|
axis=1,
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels, size, size).astype(np.float32) - 0.5
|
|
self.assertDeviceChecks(dc, op, [X], [0])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|