mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Add operators based-on IDEEP interfaces Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Enable IDEEP as a caffe2 device Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Add test cases for IDEEP ops Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Add IDEEP as a caffe2 submodule Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Skip test cases if no IDEEP support Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Correct cmake options for IDEEP Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Add dependences on ideep libraries Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Fix issues in IDEEP conv ops and etc. Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Move ideep from caffe2/ideep to caffe2/contrib/ideep Signed-off-by: Gu Jinghui <jinghui.gu@intel.com> * Update IDEEP to fix cmake issue Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Fix cmake issue caused by USE_MKL option Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com> * Correct comments in MKL cmake file Signed-off-by: Gu, Jinghui <jinghui.gu@intel.com>
248 lines
8.6 KiB
Python
248 lines
8.6 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import unittest
|
|
import hypothesis.strategies as st
|
|
from hypothesis import given, settings, unlimited
|
|
import copy
|
|
import numpy as np
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
import caffe2.python.ideep_test_util as mu
|
|
|
|
|
|
@unittest.skipIf(not workspace.C.use_ideep, "No IDEEP support.")
|
|
class ConvFusionTest(hu.HypothesisTestCase):
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(8, 20),
|
|
input_channels=st.integers(1, 16),
|
|
output_channels=st.integers(1, 16),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
group=st.integers(1, 1),
|
|
**mu.gcs)
|
|
@settings(deadline=None, timeout=unlimited)
|
|
def test_convolution_relu_fusion(self, stride, pad, kernel, size,
|
|
input_channels, output_channels,
|
|
batch_size, use_bias, group, gc, dc):
|
|
conv = core.CreateOperator(
|
|
"Conv",
|
|
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
|
|
["Y0"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
device_option=dc[0]
|
|
)
|
|
relu = core.CreateOperator(
|
|
"Relu",
|
|
["Y0"],
|
|
["Y0"],
|
|
device_option=dc[0]
|
|
)
|
|
conv_fusion = core.CreateOperator(
|
|
"ConvFusion",
|
|
["X1", "w1", "b1"] if use_bias else ["X1", "w1"],
|
|
["Y1"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
fusion_type = 1,
|
|
device_option=dc[1]
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels * group, input_channels, kernel, kernel) \
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
|
|
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X0', X, dc[0])
|
|
workspace.FeedBlob('w0', w, dc[0])
|
|
workspace.FeedBlob('b0', b, dc[0])
|
|
workspace.RunOperatorOnce(conv)
|
|
workspace.RunOperatorOnce(relu)
|
|
Y0 = workspace.FetchBlob('Y0')
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X1', X, dc[1])
|
|
workspace.FeedBlob('w1', w, dc[1])
|
|
workspace.FeedBlob('b1', b, dc[1])
|
|
workspace.RunOperatorOnce(conv_fusion)
|
|
Y1 = workspace.FetchBlob('Y1')
|
|
|
|
if not np.allclose(Y0, Y1, atol=0.01, rtol=0.01):
|
|
print(Y1.flatten())
|
|
print(Y0.flatten())
|
|
print(np.max(np.abs(Y1 - Y0)))
|
|
self.assertTrue(False)
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(8, 20),
|
|
input_channels=st.integers(1, 16),
|
|
output_channels=st.integers(1, 16),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
group=st.integers(1, 1),
|
|
**mu.gcs)
|
|
@settings(deadline=None, timeout=unlimited)
|
|
def test_convolution_sum_fusion(self, stride, pad, kernel, size,
|
|
input_channels, output_channels,
|
|
batch_size, use_bias, group, gc, dc):
|
|
conv = core.CreateOperator(
|
|
"Conv",
|
|
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
|
|
["Y0"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
device_option=dc[0]
|
|
)
|
|
sum = core.CreateOperator(
|
|
"Sum",
|
|
["S0", "Y0"],
|
|
["S0"],
|
|
device_option=dc[0]
|
|
)
|
|
conv_fusion = core.CreateOperator(
|
|
"ConvFusion",
|
|
["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"],
|
|
["S1"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
fusion_type = 2,
|
|
device_option=dc[1]
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels * group, input_channels, kernel, kernel) \
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
|
|
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X0', X, dc[0])
|
|
workspace.FeedBlob('w0', w, dc[0])
|
|
workspace.FeedBlob('b0', b, dc[0])
|
|
workspace.RunOperatorOnce(conv)
|
|
Y0 = workspace.FetchBlob('Y0')
|
|
S = np.random.rand(*Y0.shape).astype(np.float32) - 0.5
|
|
workspace.FeedBlob('S0', S, dc[0])
|
|
workspace.RunOperatorOnce(sum)
|
|
S0 = workspace.FetchBlob('S0')
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X1', X, dc[1])
|
|
workspace.FeedBlob('w1', w, dc[1])
|
|
workspace.FeedBlob('b1', b, dc[1])
|
|
workspace.FeedBlob('S1', S, dc[1])
|
|
workspace.RunOperatorOnce(conv_fusion)
|
|
S1 = workspace.FetchBlob('S1')
|
|
|
|
if not np.allclose(S0, S1, atol=0.01, rtol=0.01):
|
|
print(S1.flatten())
|
|
print(S0.flatten())
|
|
print(np.max(np.abs(S1 - S0)))
|
|
self.assertTrue(False)
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
|
|
@given(stride=st.integers(1, 3),
|
|
pad=st.integers(0, 3),
|
|
kernel=st.integers(3, 5),
|
|
size=st.integers(8, 20),
|
|
input_channels=st.integers(1, 16),
|
|
output_channels=st.integers(1, 16),
|
|
batch_size=st.integers(1, 3),
|
|
use_bias=st.booleans(),
|
|
group=st.integers(1, 1),
|
|
**mu.gcs)
|
|
@settings(deadline=None, timeout=unlimited)
|
|
def test_convolution_sum_relu_fusion(self, stride, pad, kernel, size,
|
|
input_channels, output_channels,
|
|
batch_size, use_bias, group, gc, dc):
|
|
conv = core.CreateOperator(
|
|
"Conv",
|
|
["X0", "w0", "b0"] if use_bias else ["X0", "w0"],
|
|
["Y0"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
device_option=dc[0]
|
|
)
|
|
sum = core.CreateOperator(
|
|
"Sum",
|
|
["S0", "Y0"],
|
|
["S0"],
|
|
device_option=dc[0]
|
|
)
|
|
relu = core.CreateOperator(
|
|
"Relu",
|
|
["S0"],
|
|
["S0"],
|
|
device_option=dc[0]
|
|
)
|
|
conv_fusion = core.CreateOperator(
|
|
"ConvFusion",
|
|
["X1", "w1", "b1", "S1"] if use_bias else ["X1", "w1", "S1"],
|
|
["S1"],
|
|
stride=stride,
|
|
pad=pad,
|
|
kernel=kernel,
|
|
group=group,
|
|
fusion_type = 3,
|
|
device_option=dc[1]
|
|
)
|
|
X = np.random.rand(
|
|
batch_size, input_channels * group, size, size).astype(np.float32) - 0.5
|
|
w = np.random.rand(
|
|
output_channels * group, input_channels, kernel, kernel) \
|
|
.astype(np.float32) - 0.5
|
|
b = np.random.rand(output_channels * group).astype(np.float32) - 0.5
|
|
|
|
old_ws_name = workspace.CurrentWorkspace()
|
|
workspace.SwitchWorkspace("_device_check_", True)
|
|
workspace.FeedBlob('X0', X, dc[0])
|
|
workspace.FeedBlob('w0', w, dc[0])
|
|
workspace.FeedBlob('b0', b, dc[0])
|
|
workspace.RunOperatorOnce(conv)
|
|
Y0 = workspace.FetchBlob('Y0')
|
|
S = np.random.rand(*Y0.shape).astype(np.float32) - 0.5
|
|
workspace.FeedBlob('S0', S, dc[0])
|
|
workspace.RunOperatorOnce(sum)
|
|
workspace.RunOperatorOnce(relu)
|
|
S0 = workspace.FetchBlob('S0')
|
|
|
|
workspace.ResetWorkspace()
|
|
workspace.FeedBlob('X1', X, dc[1])
|
|
workspace.FeedBlob('w1', w, dc[1])
|
|
workspace.FeedBlob('b1', b, dc[1])
|
|
workspace.FeedBlob('S1', S, dc[1])
|
|
workspace.RunOperatorOnce(conv_fusion)
|
|
S1 = workspace.FetchBlob('S1')
|
|
|
|
if not np.allclose(S0, S1, atol=0.01, rtol=0.01):
|
|
print(S1.flatten())
|
|
print(S0.flatten())
|
|
print(np.max(np.abs(S1 - S0)))
|
|
self.assertTrue(False)
|
|
workspace.SwitchWorkspace(old_ws_name)
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|