mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Fixes #154357 ## Test Result ```bash >>> import torch >>> >>> x = torch.tensor(1, device=torch.device('cpu')) >>> y = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) >>> z0 = (x.abs() * y).prod(dtype=torch.int16) Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: Autograd not support dtype: Short ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/155453 Approved by: https://github.com/albanD, https://github.com/soulitzer
116 lines
3.2 KiB
C++
116 lines
3.2 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/Export.h>
|
|
#include <torch/csrc/autograd/InferenceMode.h>
|
|
#include <torch/csrc/autograd/autograd.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
#include <torch/csrc/utils/variadic.h>
|
|
|
|
#include <ATen/core/Tensor.h>
|
|
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace torch::autograd {
|
|
|
|
using function_constructor = std::function<std::shared_ptr<Node>(edge_list&&)>;
|
|
|
|
/**
|
|
* Wraps the tensor outputs in variables and creates the grad_fn and sets the
|
|
* grad_fn if necessary.
|
|
*/
|
|
TORCH_API variable_list wrap_outputs(
|
|
const variable_list& inputs,
|
|
tensor_list&& outputs,
|
|
const function_constructor& ctr);
|
|
|
|
/// Checks that inputs contains exactly `args` items and that the first
|
|
/// `required_args`
|
|
/// items are not nullptr. If not specified, `required_args` defaults to `args`.
|
|
TORCH_API void check_input_variables(
|
|
const char* name,
|
|
const variable_list& inputs,
|
|
int args,
|
|
int required_args = -1,
|
|
bool allow_undefined = false);
|
|
|
|
struct ComputeRequiresGrad : IterArgs<ComputeRequiresGrad> {
|
|
bool out = false;
|
|
using IterArgs<ComputeRequiresGrad>::operator();
|
|
void operator()(const at::Tensor& tensor) {
|
|
const auto& var = static_cast<const Variable&>(tensor);
|
|
if (var.defined() && var.requires_grad()) {
|
|
out = true;
|
|
}
|
|
}
|
|
void operator()(const std::optional<at::Tensor>& tensor) {
|
|
if (tensor.has_value()) {
|
|
(*this)(*tensor);
|
|
}
|
|
}
|
|
bool short_circuit() {
|
|
return out;
|
|
}
|
|
};
|
|
|
|
template <typename... Args>
|
|
inline bool compute_requires_grad(Args&&... args) {
|
|
if (!GradMode::is_enabled()) {
|
|
return false;
|
|
}
|
|
return ComputeRequiresGrad().apply(std::forward<Args>(args)...).out;
|
|
}
|
|
|
|
inline void set_history(
|
|
const at::Tensor& variable,
|
|
const std::shared_ptr<Node>& grad_fn) {
|
|
TORCH_CHECK(grad_fn != nullptr);
|
|
if (variable.defined()) {
|
|
// If the codegen triggers this, you most likely want to add your newly
|
|
// added function to the DONT_REQUIRE_DERIVATIVE list in
|
|
// tools/autograd/gen_variable_type.py
|
|
TORCH_CHECK(
|
|
isDifferentiableType(variable.scalar_type()),
|
|
"Autograd not support dtype: ",
|
|
variable.scalar_type());
|
|
auto output_nr = grad_fn->add_input_metadata(variable);
|
|
impl::set_gradient_edge(variable, {grad_fn, output_nr});
|
|
} else {
|
|
grad_fn->add_input_metadata(Node::undefined_input());
|
|
}
|
|
}
|
|
|
|
inline void set_history(
|
|
const std::vector<Variable>& variables,
|
|
const std::shared_ptr<Node>& grad_fn) {
|
|
for (auto& variable : variables) {
|
|
set_history(variable, grad_fn);
|
|
}
|
|
}
|
|
|
|
inline bool isFwGradDefined(const std::optional<at::Tensor>& t) {
|
|
return t.has_value() && t->defined() && t->_fw_grad(/*level */ 0).defined();
|
|
}
|
|
|
|
inline bool isFwGradDefinedTensorList(const at::ITensorListRef& variables) {
|
|
bool ret = false;
|
|
for (auto& variable : variables) {
|
|
ret |= isFwGradDefined(variable);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
inline bool isFwGradDefinedTensorList(
|
|
const c10::List<std::optional<at::Tensor>>& li) {
|
|
bool ret = false;
|
|
for (auto i : c10::irange(li.size())) {
|
|
auto t = li.get(i);
|
|
ret |= isFwGradDefined(t);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
} // namespace torch::autograd
|