mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
There is a fast way to implement a guard for an empty dict, which is to check its bool() value. However, we can't use this guard in general, since we can only safely apply it at runtime if the runtime value actually is a dict (or, another type that works with 'bool' in the same way). A counterexample is when a tensor is passed instead of a dict, and throws on bool() operator. So we can put a type check in the guard, but that is slow enough it defeats the purpose. Instead, we note that for the case of NNModuleVariables (which are specialized NNModules not unspecialized ones), we already have a hook in place to invalidate the guards if setattr is called. I am claiming that setattr is the only way that the type of a property on an NNModule could change. If I'm right, then it's safe to (a) only use this guard for NNModuleVariables, (b) not do a type check inside the guard. Pull Request resolved: https://github.com/pytorch/pytorch/pull/95248 Approved by: https://github.com/voznesenskym
985 lines
37 KiB
Python
985 lines
37 KiB
Python
import collections
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import inspect
|
|
import operator
|
|
import re
|
|
import types
|
|
from typing import Any, Optional, Union
|
|
|
|
import torch
|
|
|
|
from torch import SymInt
|
|
from torch._guards import GuardSource
|
|
from torch._ops import PyOperator
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch.fx.immutable_collections import immutable_list
|
|
|
|
from .. import config, mutation_guard, replay_record, skipfiles
|
|
from ..allowed_functions import is_allowed, is_builtin_callable, is_numpy
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder
|
|
from ..side_effects import SideEffects
|
|
from ..source import (
|
|
AttrSource,
|
|
ConstantSource,
|
|
GetItemSource,
|
|
GlobalSource,
|
|
GlobalWeakRefSource,
|
|
is_constant_source,
|
|
LocalInputSource,
|
|
LocalSource,
|
|
RandomValueSource,
|
|
Source,
|
|
TupleIteratorGetItemSource,
|
|
)
|
|
from ..utils import (
|
|
clone_input,
|
|
get_fake_value,
|
|
getfile,
|
|
global_key_name,
|
|
HAS_NUMPY,
|
|
is_namedtuple,
|
|
is_numpy_int_type,
|
|
is_typing,
|
|
istensor,
|
|
istype,
|
|
np,
|
|
odict_values,
|
|
preserve_rng_state,
|
|
tuple_iterator,
|
|
tuple_iterator_getitem,
|
|
tuple_iterator_len,
|
|
wrap_fake_exception,
|
|
)
|
|
|
|
from .base import MutableLocal, typestr
|
|
from .builtin import BuiltinVariable
|
|
from .constant import ConstantVariable, EnumVariable
|
|
from .dicts import (
|
|
ConstDictVariable,
|
|
DataClassVariable,
|
|
DefaultDictVariable,
|
|
HFPretrainedConfigVariable,
|
|
)
|
|
from .functions import UserFunctionVariable
|
|
from .lists import (
|
|
ListIteratorVariable,
|
|
ListVariable,
|
|
NamedTupleVariable,
|
|
RangeVariable,
|
|
SizeVariable,
|
|
SliceVariable,
|
|
TupleVariable,
|
|
)
|
|
from .misc import (
|
|
AutogradFunctionContextVariable,
|
|
AutogradFunctionVariable,
|
|
ComptimeVariable,
|
|
GetAttrVariable,
|
|
InspectSignatureVariable,
|
|
LambdaVariable,
|
|
NumpyVariable,
|
|
PythonModuleVariable,
|
|
SkipFilesVariable,
|
|
TypingVariable,
|
|
)
|
|
from .nn_module import UnspecializedNNModuleVariable
|
|
from .tensor import (
|
|
SymNodeVariable,
|
|
TensorVariable,
|
|
TensorWithTFOverrideVariable,
|
|
UnspecializedPythonVariable,
|
|
)
|
|
from .torch import (
|
|
tensor_dunder_fns,
|
|
torch_special_class_types,
|
|
TorchPyOperator,
|
|
TorchVariable,
|
|
)
|
|
from .user_defined import UserDefinedClassVariable, UserDefinedObjectVariable
|
|
|
|
|
|
class _missing:
|
|
pass
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class GraphArg:
|
|
source: Source
|
|
example: Any
|
|
is_unspecialized: bool
|
|
fake_tensor: Optional[torch._subclasses.fake_tensor.FakeTensor]
|
|
# UnspecializedPythonVariable often masquerades as a tensor.
|
|
# We MUST NOT generate shape guard code
|
|
# that actually tries to access tensor properties on these values.
|
|
# is_tensor lets us tell if this graph arg actually is a tensor
|
|
# or not.
|
|
is_tensor: bool = True
|
|
|
|
def __post_init__(self):
|
|
if isinstance(self.example, torch.Tensor):
|
|
assert isinstance(
|
|
self.fake_tensor, torch._subclasses.fake_tensor.FakeTensor
|
|
)
|
|
# Mapping for downstream systems to remap back into dynamo arg positions
|
|
if isinstance(self.source, LocalInputSource):
|
|
if "graph_arg_pos" not in self.fake_tensor.__dict__:
|
|
self.fake_tensor.__dict__["graph_arg_pos"] = []
|
|
self.fake_tensor.__dict__["graph_arg_pos"].append(self.source.pos)
|
|
if isinstance(self.example, torch._subclasses.fake_tensor.FakeTensor):
|
|
raise AssertionError("Fake Tensor observed in TorchDynamo Fx graph inputs")
|
|
|
|
def load(self, tx):
|
|
return self.source.reconstruct(tx)
|
|
|
|
def get_examples(self):
|
|
return [self.example]
|
|
|
|
def get_fake_examples(self):
|
|
if self.fake_tensor is not None:
|
|
assert isinstance(
|
|
self.fake_tensor, torch._subclasses.fake_tensor.FakeTensor
|
|
)
|
|
return [self.fake_tensor]
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
def erase(self):
|
|
self.example = None
|
|
|
|
|
|
class VariableBuilder:
|
|
"""Wrap a python value in a VariableTracker() instance"""
|
|
|
|
def __init__(
|
|
self,
|
|
tx,
|
|
source: Source,
|
|
):
|
|
assert source is not None
|
|
super().__init__()
|
|
self.tx = tx
|
|
self.source = source
|
|
self.name = source.name()
|
|
|
|
def __call__(self, value):
|
|
if value in self.tx.output.side_effects:
|
|
# TODO(jansel): add guard for alias relationship
|
|
return self.tx.output.side_effects[value]
|
|
return self._wrap(value).clone(**self.options())
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _common_constants():
|
|
return set(range(17)).union(
|
|
{
|
|
20,
|
|
30,
|
|
40,
|
|
32,
|
|
64,
|
|
96,
|
|
128,
|
|
144,
|
|
240,
|
|
256,
|
|
672,
|
|
1024,
|
|
2048,
|
|
4096,
|
|
0.1,
|
|
0.01,
|
|
0.001,
|
|
0.5,
|
|
0.05,
|
|
800,
|
|
1.873536229133606,
|
|
4.135166556742356, # Work around for vision_maskrcnn where torch.clamp can't be on different devices
|
|
}
|
|
)
|
|
|
|
@staticmethod
|
|
def list_type(value):
|
|
if is_namedtuple(value):
|
|
return functools.partial(NamedTupleVariable, tuple_cls=type(value))
|
|
return {
|
|
tuple: TupleVariable,
|
|
list: ListVariable,
|
|
odict_values: ListVariable,
|
|
torch.nn.ParameterList: ListVariable,
|
|
torch.nn.ModuleList: ListVariable,
|
|
}[type(value)]
|
|
|
|
def get_source(self):
|
|
return self.source
|
|
|
|
def options(self):
|
|
return {"source": self.get_source()}
|
|
|
|
def make_guards(self, *guards):
|
|
source = self.get_source()
|
|
if (
|
|
isinstance(source, ConstantSource)
|
|
or source.guard_source() == GuardSource.CONSTANT
|
|
):
|
|
return None
|
|
return {source.make_guard(guard) for guard in guards}
|
|
|
|
def _wrap(self, value):
|
|
from ..comptime import comptime
|
|
|
|
make_guards = self.make_guards
|
|
if istype(value, (torch.SymInt, torch.SymFloat)):
|
|
return self.wrap_sym(value)
|
|
if istensor(value):
|
|
return self.wrap_tensor(value)
|
|
elif istype(value, (tuple, list, odict_values)) or is_namedtuple(value):
|
|
# One can index a tensor with a list/tuple. Therefore, we need to
|
|
# have a stricter match.
|
|
if istype(value, (tuple, list)) and all(
|
|
[isinstance(x, int) or is_numpy_int_type(x) or x is None for x in value]
|
|
):
|
|
guards = self.make_guards(GuardBuilder.EQUALS_MATCH)
|
|
else:
|
|
guards = self.make_guards(GuardBuilder.LIST_LENGTH)
|
|
output = [
|
|
VariableBuilder(self.tx, GetItemSource(self.get_source(), i))(
|
|
item
|
|
).add_guards(guards)
|
|
for i, item in enumerate(value)
|
|
]
|
|
result = self.list_type(value)(output, guards=guards)
|
|
if istype(value, list):
|
|
return self.tx.output.side_effects.track_list(
|
|
self.source, value, result
|
|
)
|
|
return result
|
|
elif istype(value, tuple_iterator):
|
|
guards = self.make_guards(GuardBuilder.TUPLE_ITERATOR_LEN)
|
|
output = [
|
|
VariableBuilder(
|
|
self.tx, TupleIteratorGetItemSource(self.get_source(), i)
|
|
)(tuple_iterator_getitem(value, i)).add_guards(guards)
|
|
for i in range(tuple_iterator_len(value))
|
|
]
|
|
return ListIteratorVariable(
|
|
output, mutable_local=MutableLocal(), guards=guards
|
|
)
|
|
elif istype(value, (slice, range)):
|
|
items = [
|
|
VariableBuilder(self.tx, AttrSource(self.get_source(), k))(
|
|
getattr(value, k)
|
|
)
|
|
for k in ("start", "stop", "step")
|
|
]
|
|
if isinstance(value, slice):
|
|
return SliceVariable(items, guards=make_guards(GuardBuilder.TYPE_MATCH))
|
|
else:
|
|
return RangeVariable(
|
|
items, guards=make_guards(GuardBuilder.EQUALS_MATCH)
|
|
)
|
|
elif istype(
|
|
value, (dict, collections.defaultdict, collections.OrderedDict)
|
|
) and all(
|
|
map(
|
|
lambda k: ConstantVariable.is_literal(k)
|
|
or self.tensor_can_be_dict_key(k)
|
|
or isinstance(k, enum.Enum),
|
|
value.keys(),
|
|
)
|
|
):
|
|
if not value and self.get_source().is_nn_module():
|
|
# It is faster to guard on 'false' property than to guard
|
|
# on actual dict keys, but we can't do this fast guard in general because
|
|
# it omits a crucial type check that ensures the value is actually still a dict at runtime.
|
|
|
|
# Why is this OK for (specialized) nnmodules? We set up a setattr hook
|
|
# to check for module property mutations, which does a reasonable,
|
|
# but not completely secure job ensuring a property wasn't changed.
|
|
guards = self.make_guards(GuardBuilder.BOOL_FALSE)
|
|
else:
|
|
guards = self.make_guards(GuardBuilder.DICT_KEYS)
|
|
|
|
# store key variables in global location for reconstruction
|
|
for key in value.keys():
|
|
if self.tensor_can_be_dict_key(key):
|
|
self.tx.store_dict_key(global_key_name(key), key)
|
|
|
|
def index_source(key):
|
|
if self.tensor_can_be_dict_key(key):
|
|
return GlobalWeakRefSource(global_key_name(key))
|
|
else:
|
|
return key
|
|
|
|
result = {
|
|
k: VariableBuilder(
|
|
self.tx, GetItemSource(self.get_source(), index_source(k))
|
|
)(value[k]).add_guards(guards)
|
|
for k in value.keys()
|
|
}
|
|
|
|
if istype(value, collections.defaultdict):
|
|
result = DefaultDictVariable(
|
|
result, type(value), value.default_factory, guards=guards
|
|
)
|
|
else:
|
|
result = ConstDictVariable(result, type(value), guards=guards)
|
|
|
|
return self.tx.output.side_effects.track_dict(self.source, value, result)
|
|
elif isinstance(value, torch.nn.Module):
|
|
if (
|
|
isinstance(value, (torch.nn.RNN, torch.nn.GRU, torch.nn.LSTM))
|
|
and not config.allow_rnn
|
|
):
|
|
unimplemented("TorchDynamo purposely graph breaks on RNN, GRU, LSTMs")
|
|
if mutation_guard.is_dynamic_nn_module(value):
|
|
# created dynamically, don't specialize on it
|
|
result = UnspecializedNNModuleVariable(
|
|
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
|
|
# don't allow STORE_ATTR mutation with custom __setattr__
|
|
return result
|
|
return self.tx.output.side_effects.track_object_existing(
|
|
self.source, value, result
|
|
)
|
|
elif getattr(value, "_is_fsdp_managed_module", False) or issubclass(
|
|
value.__class__, torch.nn.parallel.distributed.DistributedDataParallel
|
|
):
|
|
if getattr(value, "_is_fsdp_managed_module", False):
|
|
# Note: we can't do this assert inside FSDP constructor,
|
|
# since we don't know yet whether dynamo will be used
|
|
assert getattr(
|
|
value, "_fsdp_use_orig_params", False
|
|
), "Dynamo only supports FSDP with use_orig_params=True"
|
|
|
|
# See note [Dynamo treats FSDP wrapped modules as UnspecializedNNModule]
|
|
# in fully_sharded_data_parallel.py for more information
|
|
return UnspecializedNNModuleVariable(
|
|
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
else:
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
self.name,
|
|
source=self.get_source(),
|
|
# Guards are added inside register_attr_or_module
|
|
)
|
|
elif ConstantVariable.is_literal(value) or istype(
|
|
value, (torch.Size, torch.device, torch.dtype)
|
|
):
|
|
if type(value) in (int, float) and not config.specialize_int_float:
|
|
# unspecializing int/float by default, but still
|
|
# specialize for the following conditions
|
|
if (
|
|
value in self._common_constants()
|
|
or isinstance(self.source, GlobalSource)
|
|
or isinstance(self.source, GetItemSource)
|
|
or (
|
|
isinstance(self.source, AttrSource)
|
|
and isinstance(self.source.base, GlobalSource)
|
|
)
|
|
):
|
|
return ConstantVariable(
|
|
value=value,
|
|
guards=make_guards(GuardBuilder.CONSTANT_MATCH),
|
|
)
|
|
else:
|
|
return self.wrap_unspecialized_primitive(value)
|
|
else:
|
|
return ConstantVariable(
|
|
value=value,
|
|
guards=make_guards(GuardBuilder.CONSTANT_MATCH),
|
|
)
|
|
elif isinstance(value, frozenset) and (
|
|
all(is_allowed(x) or ConstantVariable.is_literal(x) for x in value)
|
|
):
|
|
# For frozenset, we can guard by object ID instead of value
|
|
# equality, this allows us to handle non-literal values
|
|
return ConstantVariable(
|
|
value=value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.ID_MATCH),
|
|
)
|
|
elif isinstance(value, enum.Enum):
|
|
return EnumVariable(
|
|
value=value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.ID_MATCH),
|
|
)
|
|
elif is_builtin_callable(value):
|
|
return BuiltinVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.BUILTIN_MATCH),
|
|
)
|
|
elif is_allowed(value):
|
|
return TorchVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif is_typing(value):
|
|
# typing.List, typing.Mapping, etc.
|
|
return TypingVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.ID_MATCH),
|
|
)
|
|
elif value is inspect.signature:
|
|
return LambdaVariable(
|
|
InspectSignatureVariable.create,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif value is comptime:
|
|
return ComptimeVariable()
|
|
elif value is dataclasses.fields:
|
|
return LambdaVariable(
|
|
_dataclasses_fields_lambda,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif is_numpy(value):
|
|
return NumpyVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(
|
|
GuardBuilder.FUNCTION_MATCH
|
|
if callable(value)
|
|
else GuardBuilder.TYPE_MATCH
|
|
),
|
|
)
|
|
elif value in tensor_dunder_fns:
|
|
return TorchVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif (
|
|
istype(value, (type, types.FunctionType))
|
|
and skipfiles.check(getfile(value), allow_torch=True)
|
|
and not inspect.getattr_static(value, "_torchdynamo_inline", False)
|
|
):
|
|
return SkipFilesVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif istype(value, (types.FunctionType, torch.jit.ScriptFunction)):
|
|
return UserFunctionVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif istype(value, (types.ModuleType, replay_record.DummyModule)):
|
|
return PythonModuleVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.PYMODULE_MATCH),
|
|
)
|
|
elif type(value) is torch.autograd.function.FunctionMeta:
|
|
return AutogradFunctionVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif isinstance(value, torch.autograd.function.FunctionCtx):
|
|
# The autograd.function context
|
|
return AutogradFunctionContextVariable()
|
|
elif (
|
|
isinstance(value, types.MethodType)
|
|
and type(getattr(value, "__self__", None))
|
|
is torch.autograd.function.FunctionMeta
|
|
and getattr(value, "__name__", "") == "apply"
|
|
and value == getattr(value.__self__, "apply", None)
|
|
):
|
|
# handle aliased autograd function `apply` calls
|
|
return GetAttrVariable(
|
|
AutogradFunctionVariable(
|
|
value.__self__,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
),
|
|
"apply",
|
|
)
|
|
elif isinstance(value, (int, float)) or (
|
|
HAS_NUMPY and (isinstance(value, np.number))
|
|
):
|
|
return self.wrap_unspecialized_primitive(value)
|
|
elif DataClassVariable.is_matching_object(value):
|
|
return DataClassVariable.wrap(self, value).add_guards(
|
|
make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
elif HFPretrainedConfigVariable.is_matching_object(value):
|
|
return HFPretrainedConfigVariable(
|
|
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
elif isinstance(value, PyOperator):
|
|
return TorchPyOperator(
|
|
value,
|
|
guards=self.make_guards(
|
|
GuardBuilder.TYPE_MATCH, GuardBuilder.NAME_MATCH
|
|
),
|
|
)
|
|
elif type(value).__name__ == "builtin_function_or_method" and isinstance(
|
|
value.__self__, torch_special_class_types
|
|
):
|
|
return TorchVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif issubclass(type(value), type):
|
|
# TODO(whc) the following seems preferable but breaks some tests, debug
|
|
# elif inspect.isclass(value):
|
|
return UserDefinedClassVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
else:
|
|
result = UserDefinedObjectVariable(
|
|
value,
|
|
source=self.source,
|
|
guards=self.make_guards(GuardBuilder.TYPE_MATCH),
|
|
)
|
|
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
|
|
# don't allow STORE_ATTR mutation with custom __setattr__
|
|
return result
|
|
return self.tx.output.side_effects.track_object_existing(
|
|
self.source, value, result
|
|
)
|
|
|
|
def tensor_can_be_dict_key(self, value):
|
|
# only allow Parameter and another specific Tensor can be used as dict key
|
|
return (
|
|
isinstance(value, torch.nn.Parameter)
|
|
or isinstance(self.source, AttrSource)
|
|
and self.source.member == "state"
|
|
and isinstance(self.source.base, LocalSource)
|
|
)
|
|
|
|
def tensor_should_specialize(self):
|
|
return (
|
|
self.source
|
|
and isinstance(self.source, GetItemSource)
|
|
and isinstance(self.source.base, GetItemSource)
|
|
and self.source.base.index == "params"
|
|
and isinstance(self.source.base.base, GetItemSource)
|
|
and isinstance(self.source.base.base.base, AttrSource)
|
|
and self.source.base.base.base.member == "param_groups"
|
|
and isinstance(self.source.base.base.base.base, LocalSource)
|
|
and (
|
|
isinstance(
|
|
self.tx.f_locals[self.source.base.base.base.base.local_name],
|
|
torch.optim.Optimizer,
|
|
)
|
|
if self.source.base.base.base.base.local_name in self.tx.f_locals.keys()
|
|
else True
|
|
)
|
|
)
|
|
|
|
def wrap_sym(self, value: Union[torch.SymInt, torch.SymFloat]):
|
|
if not is_constant_source(self.get_source()):
|
|
self.tx.output.add_grapharg(GraphArg(self.get_source(), value, False, None))
|
|
elif is_constant_source(self.get_source()):
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
source=None,
|
|
sym_num=value
|
|
# shape Guards live their own rich life via shape_env
|
|
)
|
|
return SymNodeVariable.create(
|
|
tx=self.tx,
|
|
proxy=self.tx.output.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value)
|
|
),
|
|
sym_num=value
|
|
# shape Guards live their own rich life via shape_env
|
|
)
|
|
|
|
def wrap_tensor(self, value: torch.Tensor):
|
|
if self.get_source().guard_source().is_nn_module():
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
self.name,
|
|
source=self.get_source(),
|
|
# Guards are done inside register_attr_or_module
|
|
# guards=self.make_guards(GuardBuilder.TENSOR_MATCH),
|
|
)
|
|
|
|
if is_constant_source(self.get_source()):
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
source=self.get_source(),
|
|
# Guards are added inside register_attr_or_module
|
|
)
|
|
|
|
if type(value) in config.traceable_tensor_subclasses:
|
|
# Ordinarily, we would fakeify a tensor so that it can get dynamic
|
|
# shapes and be computed on without triggering actual operations.
|
|
# However, how can we fakeify a tensor subclass? Ordinary
|
|
# inheritance (nor multiple inheritance) won't work work.
|
|
#
|
|
# Instead, our plan is to *manually simulate* the tensor subclass
|
|
# inheriting from a fake tensor with dynamo. This means our
|
|
# data representation for a tensor subclass will be a fake tensor
|
|
# + tensor subclass type + any extra data the subclass may have
|
|
# been storing on the tensor. Because all Python accesses are
|
|
# mediated through TensorWithTFOverrideVariable, we can ensure
|
|
# that we dispatch differently, e.g., according to
|
|
# __torch_function__
|
|
#
|
|
# To simplify things for now, the __dict__ tracking bits haven't
|
|
# been implemented yet, but they can be added into this design at
|
|
# a later point in time.
|
|
ignore_subclass = True
|
|
else:
|
|
assert type(value) in (torch.Tensor, torch.nn.Parameter)
|
|
ignore_subclass = False
|
|
|
|
tensor_proxy = self.tx.output.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value)
|
|
)
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=self.tx,
|
|
proxy=tensor_proxy,
|
|
example_value=value,
|
|
guards=self.make_guards(GuardBuilder.TENSOR_MATCH),
|
|
should_specialize=self.tensor_should_specialize(),
|
|
ignore_subclass=ignore_subclass,
|
|
source=self.get_source(),
|
|
)
|
|
assert "tensor_dict" not in tensor_proxy.node.meta
|
|
tensor_proxy.node.meta["tensor_dict"] = value.__dict__.copy()
|
|
|
|
# TODO: I think the result is guaranteed to be fake with
|
|
# ignore_subclass changes
|
|
fake_tensor_value = None
|
|
example_value = tensor_variable.proxy.node.meta["example_value"]
|
|
if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor):
|
|
fake_tensor_value = example_value
|
|
|
|
self.tx.output.add_grapharg(
|
|
GraphArg(self.get_source(), value, False, fake_tensor_value)
|
|
)
|
|
|
|
if type(value) in config.traceable_tensor_subclasses:
|
|
subclass_torch_function__func = value.__torch_function__.__func__
|
|
subclass_type = type(value)
|
|
# NB: This is slightly misnamed, a tensor subclass might not have
|
|
# any explicit __torch_function__ implementation and is relying
|
|
# on the default inherited from torch.Tensor
|
|
return TensorWithTFOverrideVariable(
|
|
tensor_variable,
|
|
self.get_source(),
|
|
subclass_torch_function__func,
|
|
subclass_type,
|
|
)
|
|
|
|
return tensor_variable
|
|
|
|
def wrap_unspecialized_primitive(self, value):
|
|
if self.name in self.tx.output.unspec_variable_map:
|
|
return self.tx.output.unspec_variable_map[self.name]
|
|
else:
|
|
if (
|
|
config.dynamic_shapes
|
|
and isinstance(value, int)
|
|
and not is_constant_source(self.get_source())
|
|
):
|
|
shape_env = self.tx.output.shape_env
|
|
wrapped_value = shape_env.create_symintnode(
|
|
shape_env.create_symbol(value, source=self.source), hint=value
|
|
)
|
|
self.tx.output.tracked_fakes.append(
|
|
TrackedFake(wrapped_value, self.source)
|
|
)
|
|
# TODO: Do float
|
|
else:
|
|
# TODO: Eliminate this case entirely
|
|
wrapped_value = torch.tensor(value)
|
|
if not isinstance(self.get_source(), RandomValueSource):
|
|
guards = {self.get_source().make_guard(GuardBuilder.TYPE_MATCH, True)}
|
|
options = {"guards": guards}
|
|
else:
|
|
options = {}
|
|
options.update({"source": self.get_source()})
|
|
if isinstance(wrapped_value, torch.Tensor):
|
|
options.update({"raw_value": value})
|
|
|
|
proxy = self.tx.output.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(wrapped_value)
|
|
)
|
|
|
|
unspec_var = wrap_fx_proxy_cls(
|
|
UnspecializedPythonVariable,
|
|
tx=self.tx,
|
|
proxy=proxy,
|
|
example_value=wrapped_value,
|
|
**options,
|
|
)
|
|
self.tx.output.unspec_variable_map[self.name] = unspec_var
|
|
if not is_constant_source(self.get_source()):
|
|
fake_tensor_value = None
|
|
example_value = unspec_var.proxy.node.meta["example_value"]
|
|
if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor):
|
|
fake_tensor_value = example_value
|
|
self.tx.output.add_grapharg(
|
|
GraphArg(
|
|
self.get_source(),
|
|
wrapped_value,
|
|
True,
|
|
fake_tensor_value,
|
|
is_tensor=False,
|
|
)
|
|
)
|
|
return unspec_var
|
|
|
|
|
|
def _dataclasses_fields_lambda(obj):
|
|
if isinstance(obj, UserDefinedObjectVariable):
|
|
value = obj.value
|
|
elif isinstance(obj, DataClassVariable):
|
|
value = obj.user_cls
|
|
else:
|
|
unimplemented(f"Dataclass fields handling fails for type {obj}")
|
|
items = []
|
|
for field in dataclasses.fields(value):
|
|
source = None
|
|
if obj.source:
|
|
source = GetItemSource(
|
|
AttrSource(obj.source, "__dataclass_fields__"), field.name
|
|
)
|
|
items.append(UserDefinedObjectVariable(field, source=source).add_options(obj))
|
|
return TupleVariable(items).add_options(obj)
|
|
|
|
|
|
def wrap_fx_proxy(tx, proxy, example_value=None, **options):
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=TensorVariable,
|
|
tx=tx,
|
|
proxy=proxy,
|
|
example_value=example_value,
|
|
**options,
|
|
)
|
|
|
|
|
|
# Note: Unfortunate split due to some gross classes existing that subclass TensorVariable
|
|
# Should be compositional instead
|
|
def wrap_fx_proxy_cls(
|
|
target_cls, tx, proxy, example_value=None, ignore_subclass=False, **options
|
|
):
|
|
from ..symbolic_convert import InstructionTranslatorBase
|
|
|
|
assert isinstance(tx, InstructionTranslatorBase)
|
|
if "guards" in options and options["guards"] is not None:
|
|
tx.output.guards.update(options["guards"])
|
|
|
|
assert "example_value" not in proxy.node.meta
|
|
|
|
initial_example_value = example_value
|
|
|
|
def _clone_input(value):
|
|
if isinstance(value, torch.Tensor):
|
|
# tensor subclasses will not be converted to FakeTensors and need to be cloned
|
|
if not isinstance(value, torch._subclasses.fake_tensor.FakeTensor):
|
|
# NB: ensure strides are preserved
|
|
value = clone_input(value)
|
|
|
|
return value
|
|
|
|
with preserve_rng_state():
|
|
if example_value is None:
|
|
example_value = get_fake_value(proxy.node, tx)
|
|
|
|
# Handle recursive calls here
|
|
elif isinstance(example_value, FakeTensor):
|
|
pass
|
|
|
|
elif isinstance(example_value, torch.Tensor):
|
|
if tx.export:
|
|
# The legacy behavior for real value cache with subclasses was
|
|
# to perform a clone WITHOUT preserving the subclass. It's
|
|
# not entirely clear this is what you actually want though.
|
|
with torch._C.DisableTorchFunctionSubclass():
|
|
proxy.tracer.real_value_cache[proxy.node] = _clone_input(
|
|
example_value
|
|
)
|
|
# NB: If we're ignoring subclass, then the expectation is you will
|
|
# take the returned TensorVariable and wrap it into a more
|
|
# accurate TensorVariable that is able to track subclass-ness;
|
|
# otherwise this is wrong!
|
|
kwargs = {
|
|
"ignore_subclass": ignore_subclass,
|
|
"is_tensor": target_cls is TensorVariable,
|
|
}
|
|
assert "source" in options and options["source"] is not None
|
|
kwargs["source"] = options["source"]
|
|
example_value = wrap_to_fake_tensor_and_record(
|
|
example_value, tx=tx, **kwargs
|
|
)
|
|
|
|
if isinstance(example_value, torch.Tensor):
|
|
is_parameter = isinstance(example_value, torch.nn.Parameter)
|
|
should_specialize = options.pop("should_specialize", False)
|
|
if is_parameter or should_specialize:
|
|
specialized_value = initial_example_value
|
|
else:
|
|
specialized_value = None
|
|
|
|
# NB: In most (all?) cases, this does not actually do a clone.
|
|
# (WARNING: this means that if we mutate metadata on the fake
|
|
# tensor, the stored example value will update too!)
|
|
example_value = _clone_input(example_value)
|
|
proxy.node.meta["example_value"] = example_value
|
|
specialized_props = target_cls.specialize(example_value)
|
|
if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor):
|
|
# NB: This will be wrong for ignore_subclass; fix it up later!
|
|
specialized_props["class_type"] = (
|
|
torch.nn.Parameter if is_parameter else torch.Tensor
|
|
)
|
|
|
|
specialized_props["specialized_value"] = specialized_value
|
|
|
|
options.update(specialized_props)
|
|
return target_cls(proxy, **options)
|
|
elif (
|
|
hasattr(proxy.node.target, "__name__")
|
|
and proxy.node.target.__name__ == "set_state"
|
|
and isinstance(proxy.node.target.__self__, torch._C.Generator)
|
|
or proxy.node.target == torch.random.set_rng_state
|
|
):
|
|
from . import TorchVariable
|
|
|
|
return TorchVariable(proxy.node.target)
|
|
elif (
|
|
proxy.node.target == torch._C._DisableFuncTorch
|
|
or proxy.node.target == torch.cuda._is_in_bad_fork
|
|
):
|
|
from . import UserDefinedObjectVariable
|
|
|
|
return UserDefinedObjectVariable(example_value)
|
|
elif istype(example_value, (int, bool, float)) and config.dynamic_shapes:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return SymNodeVariable.create(tx, proxy, example_value, **options)
|
|
elif istype(example_value, torch.Size) and config.dynamic_shapes:
|
|
proxy.node.meta["example_value"] = example_value
|
|
sizes = []
|
|
for i, v in enumerate(example_value):
|
|
proxy_i = proxy[i]
|
|
sizes.append(SymNodeVariable.create(tx, proxy_i, v, **options))
|
|
return SizeVariable(sizes, proxy, **options)
|
|
elif istype(example_value, int) and proxy.node.target in (
|
|
torch.seed,
|
|
operator.mod,
|
|
# some mac builds are missing torch.distributed.get_rank()
|
|
getattr(torch.distributed, "get_rank", _missing),
|
|
getattr(torch.distributed, "get_world_size", _missing),
|
|
):
|
|
if config.dynamic_shapes:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return SymNodeVariable.create(tx, proxy, example_value, **options)
|
|
else:
|
|
return ConstantVariable(example_value, **options)
|
|
elif istype(example_value, torch.Size) and all(
|
|
[isinstance(x, int) for x in example_value]
|
|
):
|
|
sizes = [ConstantVariable(x) for x in example_value]
|
|
return SizeVariable(sizes, **options)
|
|
elif isinstance(example_value, (tuple, list)):
|
|
unpacked = []
|
|
for i, val in enumerate(example_value):
|
|
if val is None:
|
|
# nn.MultiheadAttention() can return None, see issue #175
|
|
unpacked.append(
|
|
ConstantVariable(None, **options),
|
|
)
|
|
else:
|
|
unpacked.append(
|
|
wrap_fx_proxy(
|
|
tx,
|
|
proxy.tracer.create_proxy(
|
|
"call_function", operator.getitem, (proxy, i), {}
|
|
),
|
|
example_value=val,
|
|
**options,
|
|
)
|
|
)
|
|
if istype(example_value, tuple):
|
|
return TupleVariable(unpacked, **options)
|
|
elif istype(example_value, (list, immutable_list)):
|
|
return ListVariable(unpacked, mutable_local=MutableLocal(), **options)
|
|
else:
|
|
assert (
|
|
example_value.__class__.__module__ == "torch.return_types"
|
|
or hasattr(example_value, "_fields")
|
|
), ("namedtuple?")
|
|
return NamedTupleVariable(unpacked, example_value.__class__, **options)
|
|
elif example_value is None or proxy.node.target is torch.manual_seed:
|
|
return ConstantVariable(None, **options)
|
|
elif (
|
|
isinstance(example_value, int)
|
|
and proxy.node.target is torch._utils._element_size
|
|
):
|
|
proxy.node.meta["example_value"] = example_value
|
|
return ConstantVariable(example_value, **options)
|
|
elif isinstance(example_value, (torch.SymInt, torch.SymFloat)):
|
|
proxy.node.meta["example_value"] = example_value
|
|
return SymNodeVariable(proxy, example_value, **options)
|
|
elif proxy.node.target in [torch.cuda.streams.Stream, torch.cuda.current_stream]:
|
|
from . import CUDAStreamVariable
|
|
|
|
proxy.node.meta["example_value"] = example_value
|
|
return CUDAStreamVariable(proxy, example_value, **options)
|
|
else:
|
|
unimplemented(
|
|
"torch.* op returned non-Tensor "
|
|
+ f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}"
|
|
)
|
|
|
|
|
|
# Tracks the sources of all fake tensors we wrap in Dynamo.
|
|
# Used by shape guard computation.
|
|
@dataclasses.dataclass
|
|
class TrackedFake:
|
|
fake: Union[FakeTensor, SymInt]
|
|
source: Source
|
|
|
|
|
|
def wrap_to_fake_tensor_and_record(
|
|
e, tx, ignore_subclass=False, *, source: Optional[Source], is_tensor: bool
|
|
):
|
|
if type(e) in (torch.Tensor, torch.nn.Parameter) or (
|
|
ignore_subclass and isinstance(e, torch.Tensor)
|
|
):
|
|
static_shapes = (
|
|
source is None
|
|
or type(e) is torch.nn.Parameter
|
|
or config.dynamic_shapes is False
|
|
or not is_tensor
|
|
)
|
|
fake_e = wrap_fake_exception(
|
|
lambda: tx.fake_mode.from_tensor(
|
|
e,
|
|
static_shapes=static_shapes,
|
|
ignore_subclass=ignore_subclass,
|
|
source=source,
|
|
)
|
|
)
|
|
if hasattr(e, "_dynamo_dynamic_indices"):
|
|
fake_e._dynamo_dynamic_indices = e._dynamo_dynamic_indices
|
|
assert (
|
|
config.dynamic_shapes
|
|
), "mark_dynamic usage with dynamic_shapes=False is not yet supported"
|
|
if is_tensor:
|
|
tx.output.tracked_fakes.append(TrackedFake(fake_e, source))
|
|
return fake_e
|
|
else:
|
|
return e
|