pytorch/torch/csrc/Module.cpp
Sam Gross 24af02154c Use ForkingPickler for sharing tensor/storages across processes (#344)
This hooks into the (internal) ForkingPickler class in multiprocessing
to reduce tensors, storages, and CUDA events instead of our queue from
joblib. This makes it easier to use the standard multiprocessing classes
in later versions of Python.

This also exposes:

 - Tensor/Storage.share_memory_()
 - Module.share_memory()

These methods move the CPU tensors and storages to shared memory. If
you're using the "fork" method of multiprocessing, these objects can be
directly inherited instead of serialized through a queue.
2016-12-28 20:34:23 -05:00

792 lines
40 KiB
C++

#include <Python.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdbool.h>
#include <unordered_map>
#include <libshm.h>
#include <TH/TH.h>
#ifdef WITH_CUDNN
#include "cudnn/Module.h"
#endif
#include "TensorDocstrings.h"
#define WITH_NUMPY_IMPORT_ARRAY
#include "THP.h"
PyObject* module;
PyObject* tensor_classes;
PyObject *THPDefaultTensorClass = NULL;
THPGenerator *THPDefaultGenerator = NULL;
static bool THPModule_loadClasses(PyObject *self)
{
#define ASSERT_NOT_NULL(ptr) if (!(ptr)) { THPUtils_setError("couldn't load classes"); return false; }
PyObject *torch_module = PyImport_ImportModule("torch");
if (!torch_module) {
THPUtils_setError("class loader couldn't access torch module");
return false;
}
PyObject* module_dict = PyModule_GetDict(torch_module);
ASSERT_NOT_NULL(tensor_classes = PyMapping_GetItemString(module_dict, (char*)"_tensor_classes"));
ASSERT_NOT_NULL(THPDoubleStorageClass = PyMapping_GetItemString(module_dict,(char*)"DoubleStorage"));
ASSERT_NOT_NULL(THPFloatStorageClass = PyMapping_GetItemString(module_dict,(char*)"FloatStorage"));
ASSERT_NOT_NULL(THPLongStorageClass = PyMapping_GetItemString(module_dict,(char*)"LongStorage"));
ASSERT_NOT_NULL(THPIntStorageClass = PyMapping_GetItemString(module_dict,(char*)"IntStorage"));
ASSERT_NOT_NULL(THPShortStorageClass = PyMapping_GetItemString(module_dict,(char*)"ShortStorage"));
ASSERT_NOT_NULL(THPCharStorageClass = PyMapping_GetItemString(module_dict,(char*)"CharStorage"));
ASSERT_NOT_NULL(THPByteStorageClass = PyMapping_GetItemString(module_dict,(char*)"ByteStorage"));
ASSERT_NOT_NULL(THPDoubleTensorClass = PyMapping_GetItemString(module_dict,(char*)"DoubleTensor"));
ASSERT_NOT_NULL(THPFloatTensorClass = PyMapping_GetItemString(module_dict,(char*)"FloatTensor"));
ASSERT_NOT_NULL(THPLongTensorClass = PyMapping_GetItemString(module_dict,(char*)"LongTensor"));
ASSERT_NOT_NULL(THPIntTensorClass = PyMapping_GetItemString(module_dict,(char*)"IntTensor"));
ASSERT_NOT_NULL(THPShortTensorClass = PyMapping_GetItemString(module_dict,(char*)"ShortTensor"));
ASSERT_NOT_NULL(THPCharTensorClass = PyMapping_GetItemString(module_dict,(char*)"CharTensor"));
ASSERT_NOT_NULL(THPByteTensorClass = PyMapping_GetItemString(module_dict,(char*)"ByteTensor"));
return true;
#undef ASSERT_NOT_NULL
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
static bool THPModule_assignStateless(PyObject *self)
{
#define INIT_STATELESS(type) \
stateless = PyObject_Call((PyObject*)&TH_CONCAT_2(type, TensorStatelessType), arg, NULL); \
if (!stateless) { \
THPUtils_setError("stateless method initialization error"); \
return false; \
} \
if (PyObject_SetAttrString(TH_CONCAT_3(THP,type,TensorClass), THP_STATELESS_ATTRIBUTE_NAME, stateless) == -1) { \
THPUtils_setError("stateless method initialization error (on assignment)");\
}
PyObject *arg = PyTuple_New(0);
PyObject *stateless;
INIT_STATELESS(Double);
INIT_STATELESS(Float);
INIT_STATELESS(Long);
INIT_STATELESS(Int);
INIT_STATELESS(Short);
INIT_STATELESS(Char);
INIT_STATELESS(Byte);
Py_DECREF(arg);
return true;
#undef INIT_STATELESS
}
// Callback for python part. Used for additional initialization of python classes
static PyObject * THPModule_initExtension(PyObject *self, PyObject *shm_manager_path)
{
if (!THPUtils_checkBytes(shm_manager_path)) {
THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!");
return NULL;
}
libshm_init(THPUtils_bytesAsString(shm_manager_path));
if (!THPModule_loadClasses(self)) return NULL;
if (!THPModule_assignStateless(self)) return NULL;
return PyBool_FromLong(true);
}
static PyObject * THPModule_getNumThreads(PyObject *module)
{
return PyLong_FromLong(THGetNumThreads());
}
static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg)
{
THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "
"but got %s", THPUtils_typename(arg));
THSetNumThreads((int)THPUtils_unpackLong(arg));
Py_RETURN_NONE;
}
bool THPModule_isTensor(PyObject *obj)
{
int result = PySet_Contains(tensor_classes, (PyObject*)Py_TYPE(obj));
if (result == -1)
throw std::logic_error("FATAL: tensor_classes isn't a set!");
return result;
}
PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type)
{
THPDefaultTensorClass = type;
Py_RETURN_NONE;
}
PyObject * THPModule_fromNumpy(PyObject *_unused, PyObject *array)
{
#ifndef WITH_NUMPY
THPUtils_setError("torch was compiled without numpy support");
return NULL;
#else
THPUtils_assert(PyArray_Check(array), "from_numpy expects an np.ndarray "
"but got %s", THPUtils_typename(array));
int type = PyArray_TYPE((PyArrayObject*)array);
if (type == NPY_DOUBLE) {
return PyObject_CallFunctionObjArgs(THPDoubleTensorClass, array, NULL);
} else if (type == NPY_FLOAT) {
return PyObject_CallFunctionObjArgs(THPFloatTensorClass, array, NULL);
} else if (type == NPY_INT64) {
return PyObject_CallFunctionObjArgs(THPLongTensorClass, array, NULL);
} else if (type == NPY_INT32) {
return PyObject_CallFunctionObjArgs(THPIntTensorClass, array, NULL);
} else if (type == NPY_UINT8) {
return PyObject_CallFunctionObjArgs(THPByteTensorClass, array, NULL);
}
THPUtils_setError("can't convert a given np.ndarray to a tensor - it has an "
"invalid type. The only supported types are: double, float, int64, "
"int32, and uint8.");
return NULL;
#endif
}
#define IMPLEMENT_STATELESS(name) \
static PyObject * TH_CONCAT_2(THPModule_, name)(PyObject *_unused, PyObject *args, PyObject *kwargs) \
{ \
PyObject *tensor = THPDefaultTensorClass; \
PyObject *key, *value; \
Py_ssize_t pos = 0; \
for (int i = 0; i < PyTuple_Size(args); i++) { \
PyObject *item = PyTuple_GET_ITEM(args, i); \
if (THPModule_isTensor(item) || THPVariable_Check(item)) { \
tensor = item; \
goto dispatch; \
} \
} \
if (kwargs) { \
while (PyDict_Next(kwargs, &pos, &key, &value)) { \
if (THPModule_isTensor(value) || THPVariable_Check(value)) { \
tensor = value; \
goto dispatch; \
} \
} \
} \
\
dispatch: \
THPObjectPtr methods = PyObject_GetAttrString(tensor, THP_STATELESS_ATTRIBUTE_NAME); \
THPUtils_assert(methods, "Type %s doesn't implement stateless methods", \
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor)); \
THPObjectPtr method = PyObject_GetAttrString(methods, #name); \
THPUtils_assert(method, "Type %s doesn't implement stateless method " #name, \
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor)); \
return PyObject_Call(method, args, kwargs); \
}
IMPLEMENT_STATELESS(sigmoid)
IMPLEMENT_STATELESS(log)
IMPLEMENT_STATELESS(log1p)
IMPLEMENT_STATELESS(exp)
IMPLEMENT_STATELESS(cos)
IMPLEMENT_STATELESS(acos)
IMPLEMENT_STATELESS(cosh)
IMPLEMENT_STATELESS(sin)
IMPLEMENT_STATELESS(asin)
IMPLEMENT_STATELESS(sinh)
IMPLEMENT_STATELESS(tan)
IMPLEMENT_STATELESS(atan)
IMPLEMENT_STATELESS(tanh)
IMPLEMENT_STATELESS(sqrt)
IMPLEMENT_STATELESS(rsqrt)
IMPLEMENT_STATELESS(ceil)
IMPLEMENT_STATELESS(floor)
IMPLEMENT_STATELESS(round)
IMPLEMENT_STATELESS(abs)
IMPLEMENT_STATELESS(trunc)
IMPLEMENT_STATELESS(frac)
IMPLEMENT_STATELESS(mean)
IMPLEMENT_STATELESS(std)
IMPLEMENT_STATELESS(var)
IMPLEMENT_STATELESS(norm)
IMPLEMENT_STATELESS(cinv)
IMPLEMENT_STATELESS(neg)
IMPLEMENT_STATELESS(add)
IMPLEMENT_STATELESS(csub)
IMPLEMENT_STATELESS(mul)
IMPLEMENT_STATELESS(div)
IMPLEMENT_STATELESS(fmod)
IMPLEMENT_STATELESS(cmul)
IMPLEMENT_STATELESS(cdiv)
IMPLEMENT_STATELESS(cfmod)
IMPLEMENT_STATELESS(min)
IMPLEMENT_STATELESS(max)
IMPLEMENT_STATELESS(cmax)
IMPLEMENT_STATELESS(cmin)
IMPLEMENT_STATELESS(cpow)
IMPLEMENT_STATELESS(dot)
IMPLEMENT_STATELESS(sum)
IMPLEMENT_STATELESS(prod)
IMPLEMENT_STATELESS(remainder)
IMPLEMENT_STATELESS(cremainder)
IMPLEMENT_STATELESS(cumsum)
IMPLEMENT_STATELESS(cumprod)
IMPLEMENT_STATELESS(clamp)
IMPLEMENT_STATELESS(equal)
IMPLEMENT_STATELESS(eye)
IMPLEMENT_STATELESS(fill)
IMPLEMENT_STATELESS(diag)
IMPLEMENT_STATELESS(numel)
IMPLEMENT_STATELESS(sign)
IMPLEMENT_STATELESS(trace)
IMPLEMENT_STATELESS(tril)
IMPLEMENT_STATELESS(triu)
IMPLEMENT_STATELESS(zero)
IMPLEMENT_STATELESS(kthvalue)
IMPLEMENT_STATELESS(mode)
IMPLEMENT_STATELESS(median)
IMPLEMENT_STATELESS(cross)
IMPLEMENT_STATELESS(sort)
IMPLEMENT_STATELESS(topk)
IMPLEMENT_STATELESS(t)
IMPLEMENT_STATELESS(transpose)
IMPLEMENT_STATELESS(squeeze)
IMPLEMENT_STATELESS(renorm)
IMPLEMENT_STATELESS(dist)
IMPLEMENT_STATELESS(linspace)
IMPLEMENT_STATELESS(logspace)
IMPLEMENT_STATELESS(histc)
IMPLEMENT_STATELESS(atan2)
IMPLEMENT_STATELESS(pow)
IMPLEMENT_STATELESS(lerp)
IMPLEMENT_STATELESS(reshape)
IMPLEMENT_STATELESS(zeros)
IMPLEMENT_STATELESS(ones)
IMPLEMENT_STATELESS(index_select)
IMPLEMENT_STATELESS(addmm)
IMPLEMENT_STATELESS(addmv)
IMPLEMENT_STATELESS(addr)
IMPLEMENT_STATELESS(ger)
IMPLEMENT_STATELESS(mv)
IMPLEMENT_STATELESS(addbmm)
IMPLEMENT_STATELESS(baddbmm)
IMPLEMENT_STATELESS(addcmul)
IMPLEMENT_STATELESS(addcdiv)
IMPLEMENT_STATELESS(mm)
IMPLEMENT_STATELESS(bmm)
// TODO: this doesn't implement options that return numbers!
IMPLEMENT_STATELESS(multinomial)
IMPLEMENT_STATELESS(uniform)
IMPLEMENT_STATELESS(normal)
IMPLEMENT_STATELESS(cauchy)
IMPLEMENT_STATELESS(log_normal)
IMPLEMENT_STATELESS(exponential)
IMPLEMENT_STATELESS(random)
IMPLEMENT_STATELESS(geometric)
IMPLEMENT_STATELESS(bernoulli)
IMPLEMENT_STATELESS(unfold)
IMPLEMENT_STATELESS(range)
IMPLEMENT_STATELESS(gather)
IMPLEMENT_STATELESS(scatter)
IMPLEMENT_STATELESS(rand)
IMPLEMENT_STATELESS(randn)
IMPLEMENT_STATELESS(all)
IMPLEMENT_STATELESS(any)
IMPLEMENT_STATELESS(masked_select)
IMPLEMENT_STATELESS(gesv)
IMPLEMENT_STATELESS(gels)
IMPLEMENT_STATELESS(trtrs)
IMPLEMENT_STATELESS(symeig)
IMPLEMENT_STATELESS(eig)
IMPLEMENT_STATELESS(svd)
IMPLEMENT_STATELESS(inverse)
IMPLEMENT_STATELESS(potrf)
IMPLEMENT_STATELESS(potrs)
IMPLEMENT_STATELESS(potri)
IMPLEMENT_STATELESS(pstrf)
IMPLEMENT_STATELESS(qr)
IMPLEMENT_STATELESS(geqrf)
IMPLEMENT_STATELESS(orgqr)
IMPLEMENT_STATELESS(ormqr)
#undef IMPLEMENT_STATELESS
// For logical functions a reverse type search is required (if the first argument
// is a ByteTensor (result), it shouldn't pick it's version).
#define IMPLEMENT_STATELESS_REVERSED(name) \
static PyObject * TH_CONCAT_2(THPModule_, name)(PyObject *_unused, PyObject *args, PyObject *kwargs) \
{ \
PyObject *tensor = THPDefaultTensorClass; \
PyObject *key, *value; \
Py_ssize_t pos = 0; \
for (int i = PyTuple_Size(args)-1; i >= 0; i--) { \
PyObject *item = PyTuple_GET_ITEM(args, i); \
if (THPModule_isTensor(item) || THPVariable_Check(item)) { \
tensor = item; \
goto dispatch; \
} \
} \
if (kwargs) { \
while (PyDict_Next(kwargs, &pos, &key, &value)) { \
if (THPModule_isTensor(value) || THPVariable_Check(value)) { \
tensor = value; \
goto dispatch; \
} \
} \
} \
\
dispatch: \
THPObjectPtr methods = PyObject_GetAttrString(tensor, THP_STATELESS_ATTRIBUTE_NAME); \
THPUtils_assert(methods, "Type %s doesn't implement stateless methods", \
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor)); \
THPObjectPtr method = PyObject_GetAttrString(methods, #name); \
THPUtils_assert(method, "Type %s doesn't implement stateless method " #name, \
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor)); \
return PyObject_Call(method, args, kwargs); \
}
IMPLEMENT_STATELESS_REVERSED(gt)
IMPLEMENT_STATELESS_REVERSED(lt)
IMPLEMENT_STATELESS_REVERSED(ge)
IMPLEMENT_STATELESS_REVERSED(le)
IMPLEMENT_STATELESS_REVERSED(eq)
IMPLEMENT_STATELESS_REVERSED(ne)
#undef IMPLEMENT_STATELESS
// In nonzero, the first argument might be a LongTensor that will be used
// for indices output, so we should pick a function based on second
// tensor's type.
static PyObject * THPModule_nonzero(PyObject *_unused, PyObject *args)
{
PyObject *tensor = THPDefaultTensorClass;
if (PyTuple_Size(args) == 1)
tensor = PyTuple_GET_ITEM(args, 0);
else if (PyTuple_Size(args) == 2)
tensor = PyTuple_GET_ITEM(args, 1);
THPObjectPtr methods = PyObject_GetAttrString(tensor, THP_STATELESS_ATTRIBUTE_NAME);
THPUtils_assert(methods, "Type %s doesn't implement stateless methods",
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor));
THPObjectPtr method = PyObject_GetAttrString(methods, "nonzero");
THPUtils_assert(method, "Type %s doesn't implement stateless method nonzero",
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor));
return PyObject_Call(method, args, NULL);
}
static PyObject * THPModule_randperm(PyObject *_unused, PyObject *args)
{
PyObject *tensor = THPLongTensorClass;
THPObjectPtr methods = PyObject_GetAttrString(tensor, THP_STATELESS_ATTRIBUTE_NAME);
THPUtils_assert(methods, "Type %s doesn't implement stateless methods",
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor));
THPObjectPtr method = PyObject_GetAttrString(methods, "randperm");
THPUtils_assert(method, "Type %s doesn't implement stateless method randperm",
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor));
return PyObject_Call(method, args, NULL);
}
static PyObject * THPModule_cat(PyObject *_unused, PyObject *args)
{
PyObject *tensor = THPDefaultTensorClass;
THPObjectPtr iterator;
THPObjectPtr item;
if (args && PyTuple_Size(args) > 0) {
PyObject *first_arg = PyTuple_GET_ITEM(args, 0);
if (THPModule_isTensor(first_arg)) {
tensor = first_arg;
} else if ((iterator = PyObject_GetIter(first_arg))) {
item = PyIter_Next(iterator);
if (item && (THPModule_isTensor(item) || THPVariable_Check(item))) {
tensor = item;
}
}
PyErr_Clear();
}
THPObjectPtr methods = PyObject_GetAttrString(tensor, THP_STATELESS_ATTRIBUTE_NAME);
THPUtils_assert(methods, "Type %s doesn't implement statless methods",
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor));
THPObjectPtr method = PyObject_GetAttrString(methods, "cat");
THPUtils_assert(method, "Type %s doesn't implement stateless method cat",
tensor == THPDefaultTensorClass ? THPUtils_classname(tensor) : THPUtils_typename(tensor));
return PyObject_Call(method, args, NULL);
}
PyObject *THPModule_safeCall(PyObject *_unused, PyObject *args, PyObject *kwargs)
{
PyObject *result = NULL;
PyObject *args_slice = NULL;
PyThreadState *thread_state = PyThreadState_Get();
Py_ssize_t num_args = args ? PyTuple_Size(args) : 0;
THPUtils_assert(num_args > 0, "expected at least one argument");
try {
args_slice = PyTuple_GetSlice(args, 1, num_args);
result = PyObject_Call(PyTuple_GET_ITEM(args, 0), args_slice, kwargs);
} catch (std::exception &e) {
PyEval_RestoreThread(thread_state);
Py_DECREF(args_slice);
PyErr_SetString(THPException_FatalError, e.what());
Py_LeaveRecursiveCall();
}
Py_DECREF(args_slice);
return result;
}
PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args)
{
// adds a __doc__ string to a function, similar to numpy's arr_add_docstring
PyObject *obj;
PyObject *doc;
if (!PyArg_ParseTuple(args, "OO!", &obj, &THPUtils_stringType, &doc)) {
return NULL;
}
if (Py_TYPE(obj) == &PyCFunction_Type) {
PyCFunctionObject* f = (PyCFunctionObject *)obj;
if (f->m_ml->ml_doc) {
return PyErr_Format(PyExc_RuntimeError,
"function '%s' already has a docstring", f->m_ml->ml_name);
}
f->m_ml->ml_doc = THPUtils_stringAsString(doc);
Py_INCREF(doc);
} else {
return PyErr_Format(PyExc_TypeError,
"don't know how to add docstring to type '%s'", Py_TYPE(obj)->tp_name);
}
Py_RETURN_NONE;
}
#ifdef WITH_CUDA
extern PyObject * THCPModule_initExtension(PyObject *self);
extern PyObject * THCPModule_setDevice_wrap(PyObject *self, PyObject *arg);
extern PyObject * THCPModule_getDevice_wrap(PyObject *self);
extern PyObject * THCPModule_getDeviceCount_wrap(PyObject *self);
extern PyObject * THCPModule_getCurrentStream_wrap(PyObject *self);
extern PyObject * THCPModule_setStream_wrap(PyObject *self, PyObject *stream);
extern PyObject * THCPModule_getDriverVersion(PyObject *self);
extern PyObject * THCPModule_isDriverSufficient(PyObject *self);
extern PyObject * THCPModule_getRNGState(PyObject *_unused);
extern PyObject * THCPModule_setRNGState(PyObject *_unused, PyObject *_new_rng_state);
extern PyObject * THCPModule_manualSeed(PyObject *_unused, PyObject *seed);
extern PyObject * THCPModule_manualSeedAll(PyObject *_unused, PyObject *seed);
extern PyObject * THCPModule_seed(PyObject *_unused);
extern PyObject * THCPModule_seedAll(PyObject *_unused);
extern PyObject * THCPModule_initialSeed(PyObject *_unused);
extern PyObject * THCPModule_cudaHostAllocator(PyObject *_unused);
extern PyObject * THCPModule_cudaSynchronize(PyObject *_unused);
extern PyObject * THCPModule_getLibPath(PyObject *_unused);
extern PyObject * THCPModule_cudaSleep(PyObject *_unused, PyObject *cycles);
#endif
static PyMethodDef TorchMethods[] = {
{"_initExtension", (PyCFunction)THPModule_initExtension, METH_O, NULL},
{"_autograd_init", (PyCFunction)THPAutograd_initExtension, METH_NOARGS, NULL},
{"_add_docstr", (PyCFunction)THPModule_addDocStr, METH_VARARGS, NULL},
#ifdef WITH_CUDA
{"_cuda_init", (PyCFunction)THCPModule_initExtension, METH_NOARGS, NULL},
{"_cuda_setDevice", (PyCFunction)THCPModule_setDevice_wrap, METH_O, NULL},
{"_cuda_getDevice", (PyCFunction)THCPModule_getDevice_wrap, METH_NOARGS, NULL},
{"_cuda_getDeviceCount", (PyCFunction)THCPModule_getDeviceCount_wrap, METH_NOARGS, NULL},
{"_cuda_getCurrentStream", (PyCFunction)THCPModule_getCurrentStream_wrap, METH_NOARGS, NULL},
{"_cuda_setStream", (PyCFunction)THCPModule_setStream_wrap, METH_O, NULL},
{"_cuda_isDriverSufficient", (PyCFunction)THCPModule_isDriverSufficient, METH_NOARGS, NULL},
{"_cuda_getDriverVersion", (PyCFunction)THCPModule_getDriverVersion, METH_NOARGS, NULL},
{"_cuda_getRNGState", (PyCFunction)THCPModule_getRNGState, METH_NOARGS, NULL},
{"_cuda_setRNGState", (PyCFunction)THCPModule_setRNGState, METH_O, NULL},
{"_cuda_manualSeed", (PyCFunction)THCPModule_manualSeed, METH_O, NULL},
{"_cuda_manualSeedAll", (PyCFunction)THCPModule_manualSeedAll, METH_O, NULL},
{"_cuda_seed", (PyCFunction)THCPModule_seed, METH_NOARGS, NULL},
{"_cuda_seedAll", (PyCFunction)THCPModule_seedAll, METH_NOARGS, NULL},
{"_cuda_initialSeed", (PyCFunction)THCPModule_initialSeed, METH_NOARGS, NULL},
{"_cuda_cudaHostAllocator", (PyCFunction)THCPModule_cudaHostAllocator, METH_NOARGS, NULL},
{"_cuda_synchronize", (PyCFunction)THCPModule_cudaSynchronize, METH_NOARGS, NULL},
{"_cuda_getLibPath", (PyCFunction)THCPModule_getLibPath, METH_NOARGS, NULL},
{"_cuda_sleep", (PyCFunction)THCPModule_cudaSleep, METH_O, NULL},
#endif
{"_safe_call", (PyCFunction)THPModule_safeCall, METH_VARARGS | METH_KEYWORDS, NULL},
{"_set_default_tensor_type", (PyCFunction)THPModule_setDefaultTensorType, METH_O, NULL},
{"get_num_threads", (PyCFunction)THPModule_getNumThreads, METH_NOARGS, NULL},
{"set_num_threads", (PyCFunction)THPModule_setNumThreads, METH_O, NULL},
{"from_numpy", (PyCFunction)THPModule_fromNumpy, METH_O, NULL},
{"sigmoid", (PyCFunction)THPModule_sigmoid, METH_VARARGS | METH_KEYWORDS, NULL},
{"log", (PyCFunction)THPModule_log, METH_VARARGS | METH_KEYWORDS, NULL},
{"log1p", (PyCFunction)THPModule_log1p, METH_VARARGS | METH_KEYWORDS, NULL},
{"exp", (PyCFunction)THPModule_exp, METH_VARARGS | METH_KEYWORDS, NULL},
{"cos", (PyCFunction)THPModule_cos, METH_VARARGS | METH_KEYWORDS, NULL},
{"acos", (PyCFunction)THPModule_acos, METH_VARARGS | METH_KEYWORDS, NULL},
{"cosh", (PyCFunction)THPModule_cosh, METH_VARARGS | METH_KEYWORDS, NULL},
{"sin", (PyCFunction)THPModule_sin, METH_VARARGS | METH_KEYWORDS, NULL},
{"asin", (PyCFunction)THPModule_asin, METH_VARARGS | METH_KEYWORDS, NULL},
{"sinh", (PyCFunction)THPModule_sinh, METH_VARARGS | METH_KEYWORDS, NULL},
{"tan", (PyCFunction)THPModule_tan, METH_VARARGS | METH_KEYWORDS, NULL},
{"atan", (PyCFunction)THPModule_atan, METH_VARARGS | METH_KEYWORDS, NULL},
{"tanh", (PyCFunction)THPModule_tanh, METH_VARARGS | METH_KEYWORDS, NULL},
{"sqrt", (PyCFunction)THPModule_sqrt, METH_VARARGS | METH_KEYWORDS, NULL},
{"rsqrt", (PyCFunction)THPModule_rsqrt, METH_VARARGS | METH_KEYWORDS, NULL},
{"ceil", (PyCFunction)THPModule_ceil, METH_VARARGS | METH_KEYWORDS, NULL},
{"floor", (PyCFunction)THPModule_floor, METH_VARARGS | METH_KEYWORDS, NULL},
{"round", (PyCFunction)THPModule_round, METH_VARARGS | METH_KEYWORDS, NULL},
{"abs", (PyCFunction)THPModule_abs, METH_VARARGS | METH_KEYWORDS, NULL},
{"trunc", (PyCFunction)THPModule_trunc, METH_VARARGS | METH_KEYWORDS, NULL},
{"frac", (PyCFunction)THPModule_frac, METH_VARARGS | METH_KEYWORDS, NULL},
{"mean", (PyCFunction)THPModule_mean, METH_VARARGS | METH_KEYWORDS, NULL},
{"std", (PyCFunction)THPModule_std, METH_VARARGS | METH_KEYWORDS, NULL},
{"var", (PyCFunction)THPModule_var, METH_VARARGS | METH_KEYWORDS, NULL},
{"norm", (PyCFunction)THPModule_norm, METH_VARARGS | METH_KEYWORDS, NULL},
{"cinv", (PyCFunction)THPModule_cinv, METH_VARARGS | METH_KEYWORDS, NULL},
{"neg", (PyCFunction)THPModule_neg, METH_VARARGS | METH_KEYWORDS, NULL},
{"add", (PyCFunction)THPModule_add, METH_VARARGS | METH_KEYWORDS, NULL},
{"csub", (PyCFunction)THPModule_csub, METH_VARARGS | METH_KEYWORDS, NULL},
{"mul", (PyCFunction)THPModule_mul, METH_VARARGS | METH_KEYWORDS, NULL},
{"div", (PyCFunction)THPModule_div, METH_VARARGS | METH_KEYWORDS, NULL},
{"fmod", (PyCFunction)THPModule_fmod, METH_VARARGS | METH_KEYWORDS, NULL},
{"mod", (PyCFunction)THPModule_fmod, METH_VARARGS | METH_KEYWORDS, NULL},
{"cmul", (PyCFunction)THPModule_cmul, METH_VARARGS | METH_KEYWORDS, NULL},
{"cdiv", (PyCFunction)THPModule_cdiv, METH_VARARGS | METH_KEYWORDS, NULL},
{"cfmod", (PyCFunction)THPModule_cfmod, METH_VARARGS | METH_KEYWORDS, NULL},
{"cmod", (PyCFunction)THPModule_cfmod, METH_VARARGS | METH_KEYWORDS, NULL},
{"min", (PyCFunction)THPModule_min, METH_VARARGS | METH_KEYWORDS, NULL},
{"max", (PyCFunction)THPModule_max, METH_VARARGS | METH_KEYWORDS, NULL},
{"cmax", (PyCFunction)THPModule_cmax, METH_VARARGS | METH_KEYWORDS, NULL},
{"cmin", (PyCFunction)THPModule_cmin, METH_VARARGS | METH_KEYWORDS, NULL},
{"cpow", (PyCFunction)THPModule_cpow, METH_VARARGS | METH_KEYWORDS, NULL},
{"dot", (PyCFunction)THPModule_dot, METH_VARARGS | METH_KEYWORDS, NULL},
{"sum", (PyCFunction)THPModule_sum, METH_VARARGS | METH_KEYWORDS, NULL},
{"prod", (PyCFunction)THPModule_prod, METH_VARARGS | METH_KEYWORDS, NULL},
{"remainder", (PyCFunction)THPModule_remainder, METH_VARARGS | METH_KEYWORDS, NULL},
{"cremainder", (PyCFunction)THPModule_cremainder, METH_VARARGS | METH_KEYWORDS, NULL},
{"cumsum", (PyCFunction)THPModule_cumsum, METH_VARARGS | METH_KEYWORDS, NULL},
{"cumprod", (PyCFunction)THPModule_cumprod, METH_VARARGS | METH_KEYWORDS, NULL},
{"clamp", (PyCFunction)THPModule_clamp, METH_VARARGS | METH_KEYWORDS, NULL},
{"equal", (PyCFunction)THPModule_equal, METH_VARARGS | METH_KEYWORDS, NULL},
{"eye", (PyCFunction)THPModule_eye, METH_VARARGS | METH_KEYWORDS, NULL},
{"fill", (PyCFunction)THPModule_fill, METH_VARARGS | METH_KEYWORDS, NULL},
{"diag", (PyCFunction)THPModule_diag, METH_VARARGS | METH_KEYWORDS, NULL},
{"numel", (PyCFunction)THPModule_numel, METH_VARARGS | METH_KEYWORDS, NULL},
{"sign", (PyCFunction)THPModule_sign, METH_VARARGS | METH_KEYWORDS, NULL},
{"trace", (PyCFunction)THPModule_trace, METH_VARARGS | METH_KEYWORDS, NULL},
{"tril", (PyCFunction)THPModule_tril, METH_VARARGS | METH_KEYWORDS, NULL},
{"triu", (PyCFunction)THPModule_triu, METH_VARARGS | METH_KEYWORDS, NULL},
{"zero", (PyCFunction)THPModule_zero, METH_VARARGS | METH_KEYWORDS, NULL},
{"gt", (PyCFunction)THPModule_gt, METH_VARARGS | METH_KEYWORDS, NULL},
{"lt", (PyCFunction)THPModule_lt, METH_VARARGS | METH_KEYWORDS, NULL},
{"ge", (PyCFunction)THPModule_ge, METH_VARARGS | METH_KEYWORDS, NULL},
{"le", (PyCFunction)THPModule_le, METH_VARARGS | METH_KEYWORDS, NULL},
{"eq", (PyCFunction)THPModule_eq, METH_VARARGS | METH_KEYWORDS, NULL},
{"ne", (PyCFunction)THPModule_ne, METH_VARARGS | METH_KEYWORDS, NULL},
{"kthvalue", (PyCFunction)THPModule_kthvalue, METH_VARARGS | METH_KEYWORDS, NULL},
{"mode", (PyCFunction)THPModule_mode, METH_VARARGS | METH_KEYWORDS, NULL},
{"median", (PyCFunction)THPModule_median, METH_VARARGS | METH_KEYWORDS, NULL},
{"cross", (PyCFunction)THPModule_cross, METH_VARARGS | METH_KEYWORDS, NULL},
{"sort", (PyCFunction)THPModule_sort, METH_VARARGS | METH_KEYWORDS, NULL},
{"topk", (PyCFunction)THPModule_topk, METH_VARARGS | METH_KEYWORDS, NULL},
{"t", (PyCFunction)THPModule_t, METH_VARARGS | METH_KEYWORDS, NULL},
{"transpose", (PyCFunction)THPModule_transpose, METH_VARARGS | METH_KEYWORDS, NULL},
{"squeeze", (PyCFunction)THPModule_squeeze, METH_VARARGS | METH_KEYWORDS, NULL},
{"nonzero", (PyCFunction)THPModule_nonzero, METH_VARARGS, NULL},
{"renorm", (PyCFunction)THPModule_renorm, METH_VARARGS | METH_KEYWORDS, NULL},
{"dist", (PyCFunction)THPModule_dist, METH_VARARGS | METH_KEYWORDS, NULL},
{"linspace", (PyCFunction)THPModule_linspace, METH_VARARGS | METH_KEYWORDS, NULL},
{"logspace", (PyCFunction)THPModule_logspace, METH_VARARGS | METH_KEYWORDS, NULL},
{"histc", (PyCFunction)THPModule_histc, METH_VARARGS | METH_KEYWORDS, NULL},
{"atan2", (PyCFunction)THPModule_atan2, METH_VARARGS | METH_KEYWORDS, NULL},
{"pow", (PyCFunction)THPModule_pow, METH_VARARGS | METH_KEYWORDS, NULL},
{"lerp", (PyCFunction)THPModule_lerp, METH_VARARGS | METH_KEYWORDS, NULL},
{"reshape", (PyCFunction)THPModule_reshape, METH_VARARGS | METH_KEYWORDS, NULL},
{"zeros", (PyCFunction)THPModule_zeros, METH_VARARGS | METH_KEYWORDS, NULL},
{"ones", (PyCFunction)THPModule_ones, METH_VARARGS | METH_KEYWORDS, NULL},
{"index_select", (PyCFunction)THPModule_index_select, METH_VARARGS | METH_KEYWORDS, NULL},
{"addmm", (PyCFunction)THPModule_addmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"addmv", (PyCFunction)THPModule_addmv, METH_VARARGS | METH_KEYWORDS, NULL},
{"addr", (PyCFunction)THPModule_addr, METH_VARARGS | METH_KEYWORDS, NULL},
{"ger", (PyCFunction)THPModule_ger, METH_VARARGS | METH_KEYWORDS, NULL},
{"mv", (PyCFunction)THPModule_mv, METH_VARARGS | METH_KEYWORDS, NULL},
{"addbmm", (PyCFunction)THPModule_addbmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"baddbmm", (PyCFunction)THPModule_baddbmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"addcmul", (PyCFunction)THPModule_addcmul, METH_VARARGS | METH_KEYWORDS, NULL},
{"addcdiv", (PyCFunction)THPModule_addcdiv, METH_VARARGS | METH_KEYWORDS, NULL},
{"mm", (PyCFunction)THPModule_mm, METH_VARARGS | METH_KEYWORDS, NULL},
{"bmm", (PyCFunction)THPModule_bmm, METH_VARARGS | METH_KEYWORDS, NULL},
{"multinomial", (PyCFunction)THPModule_multinomial, METH_VARARGS | METH_KEYWORDS, NULL},
{"uniform", (PyCFunction)THPModule_uniform, METH_VARARGS | METH_KEYWORDS, NULL},
{"normal", (PyCFunction)THPModule_normal, METH_VARARGS | METH_KEYWORDS, NULL},
{"cauchy", (PyCFunction)THPModule_cauchy, METH_VARARGS | METH_KEYWORDS, NULL},
{"log_normal", (PyCFunction)THPModule_log_normal, METH_VARARGS | METH_KEYWORDS, NULL},
{"exponential", (PyCFunction)THPModule_exponential, METH_VARARGS | METH_KEYWORDS, NULL},
{"random", (PyCFunction)THPModule_random, METH_VARARGS | METH_KEYWORDS, NULL},
{"geometric", (PyCFunction)THPModule_geometric, METH_VARARGS | METH_KEYWORDS, NULL},
{"bernoulli", (PyCFunction)THPModule_bernoulli, METH_VARARGS | METH_KEYWORDS, NULL},
{"rand", (PyCFunction)THPModule_rand, METH_VARARGS | METH_KEYWORDS, NULL},
{"randn", (PyCFunction)THPModule_randn, METH_VARARGS | METH_KEYWORDS, NULL},
{"randperm", (PyCFunction)THPModule_randperm, METH_VARARGS | METH_KEYWORDS, NULL},
{"unfold", (PyCFunction)THPModule_unfold, METH_VARARGS | METH_KEYWORDS, NULL},
{"range", (PyCFunction)THPModule_range, METH_VARARGS | METH_KEYWORDS, NULL},
{"gather", (PyCFunction)THPModule_gather, METH_VARARGS | METH_KEYWORDS, NULL},
{"scatter", (PyCFunction)THPModule_scatter, METH_VARARGS | METH_KEYWORDS, NULL},
{"all", (PyCFunction)THPModule_all, METH_VARARGS | METH_KEYWORDS, NULL},
{"any", (PyCFunction)THPModule_any, METH_VARARGS | METH_KEYWORDS, NULL},
{"cat", (PyCFunction)THPModule_cat, METH_VARARGS, NULL},
{"masked_select", (PyCFunction)THPModule_masked_select, METH_VARARGS | METH_KEYWORDS, NULL},
{"gesv", (PyCFunction)THPModule_gesv, METH_VARARGS | METH_KEYWORDS, NULL},
{"gels", (PyCFunction)THPModule_gels, METH_VARARGS | METH_KEYWORDS, NULL},
{"trtrs", (PyCFunction)THPModule_trtrs, METH_VARARGS | METH_KEYWORDS, NULL},
{"symeig", (PyCFunction)THPModule_symeig, METH_VARARGS | METH_KEYWORDS, NULL},
{"eig", (PyCFunction)THPModule_eig, METH_VARARGS | METH_KEYWORDS, NULL},
{"svd", (PyCFunction)THPModule_svd, METH_VARARGS | METH_KEYWORDS, NULL},
{"inverse", (PyCFunction)THPModule_inverse, METH_VARARGS | METH_KEYWORDS, NULL},
{"potrf", (PyCFunction)THPModule_potrf, METH_VARARGS | METH_KEYWORDS, NULL},
{"potrs", (PyCFunction)THPModule_potrs, METH_VARARGS | METH_KEYWORDS, NULL},
{"potri", (PyCFunction)THPModule_potri, METH_VARARGS | METH_KEYWORDS, NULL},
{"pstrf", (PyCFunction)THPModule_pstrf, METH_VARARGS | METH_KEYWORDS, NULL},
{"qr", (PyCFunction)THPModule_qr, METH_VARARGS | METH_KEYWORDS, NULL},
{"geqrf", (PyCFunction)THPModule_geqrf, METH_VARARGS | METH_KEYWORDS, NULL},
{"orgqr", (PyCFunction)THPModule_orgqr, METH_VARARGS | METH_KEYWORDS, NULL},
{"ormqr", (PyCFunction)THPModule_ormqr, METH_VARARGS | METH_KEYWORDS, NULL},
{NULL, NULL, 0, NULL}
};
static void errorHandler(const char *msg, void *data)
{
throw THException(msg);
}
static void errorHandlerArg(int argNumber, const char *msg, void *data)
{
throw THArgException(msg, argNumber);
}
static void updateErrorHandlers()
{
THSetDefaultErrorHandler(errorHandler, NULL);
THSetDefaultArgErrorHandler(errorHandlerArg, NULL);
}
bool THCPDoubleStorage_init(PyObject *module);
bool THCPFloatStorage_init(PyObject *module);
bool THCPHalfStorage_init(PyObject *module);
bool THCPLongStorage_init(PyObject *module);
bool THCPIntStorage_init(PyObject *module);
bool THCPShortStorage_init(PyObject *module);
bool THCPCharStorage_init(PyObject *module);
bool THCPByteStorage_init(PyObject *module);
bool THCPDoubleTensor_init(PyObject *module);
bool THCPFloatTensor_init(PyObject *module);
bool THCPHalfTensor_init(PyObject *module);
bool THCPLongTensor_init(PyObject *module);
bool THCPIntTensor_init(PyObject *module);
bool THCPShortTensor_init(PyObject *module);
bool THCPCharTensor_init(PyObject *module);
bool THCPByteTensor_init(PyObject *module);
bool THCPStream_init(PyObject *module);
static std::vector<PyMethodDef> methods;
#if PY_MAJOR_VERSION == 2
PyMODINIT_FUNC init_C()
#else
PyMODINIT_FUNC PyInit__C()
#endif
{
#if PY_MAJOR_VERSION == 2
#define ASSERT_TRUE(cmd) if (!(cmd)) {PyErr_SetString(PyExc_ImportError, "initialization error"); return;}
#else
#define ASSERT_TRUE(cmd) if (!(cmd)) return NULL
#endif
THPUtils_addPyMethodDefs(methods, TorchMethods);
#ifdef WITH_CUDNN
THPUtils_addPyMethodDefs(methods, THCUDNN_methods());
#endif
#if PY_MAJOR_VERSION == 2
ASSERT_TRUE(module = Py_InitModule("torch._C", methods.data()));
#else
static struct PyModuleDef torchmodule = {
PyModuleDef_HEAD_INIT,
"torch._C",
NULL,
-1,
methods.data()
};
ASSERT_TRUE(module = PyModule_Create(&torchmodule));
#endif
ASSERT_TRUE(THPGenerator_init(module));
ASSERT_TRUE(THPException_init(module));
ASSERT_TRUE(THPSize_init(module));
ASSERT_TRUE(THPVariable_initModule(module));
ASSERT_TRUE(THPFunction_initModule(module));
ASSERT_TRUE(THPEngine_initModule(module));
ASSERT_TRUE(THPDoubleStorage_init(module));
ASSERT_TRUE(THPFloatStorage_init(module));
ASSERT_TRUE(THPLongStorage_init(module));
ASSERT_TRUE(THPIntStorage_init(module));
ASSERT_TRUE(THPShortStorage_init(module));
ASSERT_TRUE(THPCharStorage_init(module));
ASSERT_TRUE(THPByteStorage_init(module));
ASSERT_TRUE(THPDoubleTensor_init(module));
ASSERT_TRUE(THPFloatTensor_init(module));
ASSERT_TRUE(THPLongTensor_init(module));
ASSERT_TRUE(THPIntTensor_init(module));
ASSERT_TRUE(THPShortTensor_init(module));
ASSERT_TRUE(THPCharTensor_init(module));
ASSERT_TRUE(THPByteTensor_init(module));
#ifdef WITH_CUDA
// This will only initialise base classes and attach them to library namespace
// They won't be ready for real usage until importing cuda module, that will
// complete the process (but it defines Python classes before calling back into
// C, so these lines have to execute first)..
ASSERT_TRUE(THCPDoubleStorage_init(module));
ASSERT_TRUE(THCPFloatStorage_init(module));
ASSERT_TRUE(THCPHalfStorage_init(module));
ASSERT_TRUE(THCPLongStorage_init(module));
ASSERT_TRUE(THCPIntStorage_init(module));
ASSERT_TRUE(THCPShortStorage_init(module));
ASSERT_TRUE(THCPCharStorage_init(module));
ASSERT_TRUE(THCPByteStorage_init(module));
ASSERT_TRUE(THCPDoubleTensor_init(module));
ASSERT_TRUE(THCPFloatTensor_init(module));
ASSERT_TRUE(THCPHalfTensor_init(module));
ASSERT_TRUE(THCPLongTensor_init(module));
ASSERT_TRUE(THCPIntTensor_init(module));
ASSERT_TRUE(THCPShortTensor_init(module));
ASSERT_TRUE(THCPCharTensor_init(module));
ASSERT_TRUE(THCPByteTensor_init(module));
ASSERT_TRUE(THCPStream_init(module));
#endif
#ifdef WITH_CUDNN
ASSERT_TRUE(THCUDNNModule_initModule(module));
PyObject *has_cudnn = Py_True;
#else
PyObject *has_cudnn = Py_False;
#endif
Py_INCREF(has_cudnn);
ASSERT_TRUE(PyModule_AddObject(module, "has_cudnn", has_cudnn) == 0);
THPDefaultGenerator = (THPGenerator*)THPGenerator_New();
ASSERT_TRUE(THPDefaultGenerator != nullptr);
ASSERT_TRUE(PyModule_AddObject(module, "default_generator", (PyObject*)THPDefaultGenerator) == 0);
updateErrorHandlers();
#ifdef WITH_NUMPY
import_array();
#endif
#if PY_MAJOR_VERSION == 2
#else
return module;
#endif
#undef ASSERT_TRUE
}