mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Previously prepare_fx returns an ObservedGraphModule and convert_fx returns a QuantizedGraphModule, this is to preserve the attributes since torch.fx.GraphModule did not preserve them, after https://github.com/pytorch/pytorch/pull/92062 we are preserving `model.meta`, so we can store the attributes in model.meta now to preserve them. With this, we don't need to create a new type of GraphModule in these functions and can use GraphModule directly, this is useful for quantization in pytorch 2.0 flow, if other transformations are using GraphModule as well, the quantization passes will be composable with them Test Plan: python test/test_quantization.py TestQuantizeFx python test/test_quantization.py TestQuantizeFxOps python test/test_quantization.py TestQuantizeFxModels python test/test_quantization.py TestQuantizePT2E Imported from OSS Differential Revision: D42979722 Pull Request resolved: https://github.com/pytorch/pytorch/pull/94412 Approved by: https://github.com/vkuzo
784 lines
32 KiB
Python
784 lines
32 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.overrides
|
|
from torch.nn.modules.module import _addindent
|
|
from torch.package import PackageImporter, PackageExporter
|
|
import linecache
|
|
from typing import Type, Dict, List, Any, Union, Optional, Set
|
|
from .graph import Graph, _PyTreeCodeGen, _is_from_torch, _custom_builtins, PythonCode
|
|
from ._compatibility import compatibility
|
|
from torch.package import Importer, sys_importer
|
|
import copy
|
|
import itertools
|
|
import sys
|
|
import traceback
|
|
from pathlib import Path
|
|
import os
|
|
import warnings
|
|
|
|
__all__ = ["reduce_graph_module", "reduce_package_graph_module", "reduce_deploy_graph_module", "GraphModule"]
|
|
|
|
_USER_PRESERVED_ATTRIBUTES_KEY = "_user_preserved_attributes"
|
|
|
|
# Normal exec loses the source code, however we can work with
|
|
# the linecache module to recover it.
|
|
# Using _exec_with_source will add it to our local cache
|
|
# and then tools like TorchScript will be able to get source info.
|
|
class _EvalCacheLoader:
|
|
def __init__(self):
|
|
self.eval_cache = {}
|
|
self.next_id = 0
|
|
|
|
def cache(self, src: str, globals: Dict[str, Any]):
|
|
"""Store the source in a private cache, and add a lazy entry in linecache
|
|
that allows the source to be retrieved by 'filename'.
|
|
|
|
Args:
|
|
src (str): The module source to cache
|
|
globals (dict): The module globals
|
|
|
|
Returns:
|
|
str: The cache key (and dummy filename) generated for src.
|
|
"""
|
|
|
|
key = self._get_key()
|
|
self.eval_cache[key] = src
|
|
|
|
# Don't mutate globals so that this loader is only used
|
|
# to populate linecache, and doesn't interact with other modules
|
|
# that might check `__loader__`
|
|
globals_copy = globals.copy()
|
|
globals_copy['__file__'] = key
|
|
globals_copy['__name__'] = key
|
|
globals_copy['__loader__'] = self
|
|
linecache.lazycache(key, globals_copy)
|
|
|
|
return key
|
|
|
|
# Part of the loader protocol (PEP 302)
|
|
# linecache will use this method when trying to find source code
|
|
def get_source(self, module_name) -> Optional[str]:
|
|
if module_name in self.eval_cache:
|
|
return self.eval_cache[module_name]
|
|
return None
|
|
|
|
def _get_key(self):
|
|
key = f'<eval_with_key>.{self.next_id}'
|
|
self.next_id += 1
|
|
return key
|
|
|
|
_loader = _EvalCacheLoader()
|
|
|
|
|
|
def _exec_with_source(src: str, globals: Dict[str, Any]):
|
|
key = _loader.cache(src, globals)
|
|
exec(compile(src, key, 'exec'), globals)
|
|
|
|
|
|
def _forward_from_src(src: str, globals: Dict[str, Any]):
|
|
# avoid mutating the passed in dict
|
|
globals_copy = globals.copy()
|
|
_exec_with_source(src, globals_copy)
|
|
forward_fn = globals_copy['forward']
|
|
del globals_copy['forward']
|
|
return forward_fn
|
|
|
|
|
|
def _format_import_statement(name: str, obj: Any, importer: Importer) -> str:
|
|
if name in _custom_builtins:
|
|
return _custom_builtins[name].import_str
|
|
if _is_from_torch(name):
|
|
return 'import torch'
|
|
module_name, attr_name = importer.get_name(obj)
|
|
return f'from {module_name} import {attr_name} as {name}'
|
|
|
|
|
|
def _format_import_block(globals: Dict[str, Any], importer: Importer):
|
|
import_strs: Set[str] = set()
|
|
for name, obj in globals.items():
|
|
import_strs.add(_format_import_statement(name, obj, importer))
|
|
return '\n'.join(import_strs)
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def reduce_graph_module(body: Dict[Any, Any], import_block: str) -> torch.nn.Module:
|
|
# BC: attribute name was changed from `code` to `_code` to facilitate
|
|
# making `code` into a property and adding a docstring to it
|
|
fn_src = body.get('_code') or body['code']
|
|
forward = _forward_from_src(import_block + fn_src, {})
|
|
return _deserialize_graph_module(forward, body)
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def reduce_package_graph_module(
|
|
importer: PackageImporter, body: Dict[Any, Any], generated_module_name: str
|
|
) -> torch.nn.Module:
|
|
forward = importer.import_module(generated_module_name).forward
|
|
return _deserialize_graph_module(forward, body)
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def reduce_deploy_graph_module(
|
|
importer: PackageImporter, body: Dict[Any, Any], import_block: str
|
|
) -> torch.nn.Module:
|
|
ns = {}
|
|
ns["__builtins__"] = importer.patched_builtins
|
|
fn_src = body.get('_code')
|
|
assert fn_src is not None
|
|
forward = _forward_from_src(import_block + fn_src, ns)
|
|
return _deserialize_graph_module(forward, body)
|
|
|
|
|
|
def _deserialize_graph_module(forward, body: Dict[Any, Any]) -> torch.nn.Module:
|
|
"""
|
|
Deserialize a GraphModule given the dictionary of the original module,
|
|
using the code to reconstruct the graph. We delete the actual graph before
|
|
saving the dictionary so that changes to the in-memory graph format do not
|
|
get serialized.
|
|
"""
|
|
# We create a dummy class here because symbolic_trace pulls the forward()
|
|
# function off of the class, rather than the instance
|
|
class CodeOnlyModule(torch.nn.Module):
|
|
def __init__(self, body):
|
|
super().__init__()
|
|
self.__dict__ = body
|
|
|
|
# Try to retrieve the forward source in a backward-compatible way
|
|
CodeOnlyModule.forward = forward
|
|
|
|
tracer_cls = body.get('_tracer_cls')
|
|
if tracer_cls is None:
|
|
from ._symbolic_trace import Tracer
|
|
tracer_cls = Tracer
|
|
|
|
graphmodule_cls_name = body.get('_graphmodule_cls_name', 'GraphModule')
|
|
|
|
# This is a workaround for a mypy linter issue related to
|
|
# passing base class as an argument - https://github.com/python/mypy/issues/5865.
|
|
cls_tracer : Any = tracer_cls
|
|
|
|
class KeepModules(cls_tracer):
|
|
# we shouldn't trace into any of the submodules,
|
|
# because they were not traced in the original GraphModule
|
|
def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool:
|
|
return True
|
|
|
|
com = CodeOnlyModule(body)
|
|
|
|
tracer_extras = body.get('_tracer_extras', {})
|
|
graph = KeepModules().trace(com, **tracer_extras)
|
|
|
|
# Manually set Tracer class on the reconstructed Graph, to avoid
|
|
# referencing the private local subclass KeepModules.
|
|
graph._tracer_cls = tracer_cls
|
|
gm = GraphModule(com, graph, class_name=graphmodule_cls_name)
|
|
|
|
# The GraphModule constructor only retains attributes referenced by the graph.
|
|
# In this case, our goal is return a GraphModule as close to identical as the one
|
|
# put into the package. If any additional attributes were present in body,
|
|
# we should keep them.
|
|
for k, v in body.items():
|
|
if not hasattr(gm, k):
|
|
setattr(gm, k, v)
|
|
return gm
|
|
|
|
# copy an attribute value with qualified name 'target' from 'from_module' to 'to_module'
|
|
# This installs empty Modules where none exist yet if they are subpaths of target
|
|
def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str):
|
|
*prefix, field = target.split('.')
|
|
for item in prefix:
|
|
f = getattr(from_module, item)
|
|
t = getattr(to_module, item, None)
|
|
if f is t:
|
|
# we have already installed one of its parents
|
|
# (e.g. target = root.linear.weight, but we have already installed root.linear)
|
|
# once we install a parent, we no longer need to copy the children
|
|
# since all the needed properties will already be present
|
|
return
|
|
|
|
if t is None:
|
|
t = torch.nn.Module()
|
|
setattr(to_module, item, t)
|
|
from_module, to_module = f, t
|
|
|
|
orig = getattr(from_module, field)
|
|
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
|
# So, we register it as a named buffer in the target module.
|
|
if isinstance(orig, torch.Tensor) and not isinstance(orig, torch.nn.Parameter):
|
|
to_module.register_buffer(field, orig)
|
|
else:
|
|
setattr(to_module, field, orig)
|
|
|
|
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
|
|
# This installs empty Modules where none exist yet if they are subpaths of target
|
|
def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str):
|
|
*prefix, field = target.split('.')
|
|
for item in prefix:
|
|
t = getattr(to_module, item, None)
|
|
|
|
if t is None:
|
|
t = torch.nn.Module()
|
|
setattr(to_module, item, t)
|
|
to_module = t
|
|
|
|
# If it is a tensor and not a parameter attribute of a module, it should be a named buffer.
|
|
# So, we register it as a named buffer in the target module.
|
|
if isinstance(from_obj, torch.Tensor) and not isinstance(from_obj, torch.nn.Parameter):
|
|
to_module.register_buffer(field, from_obj)
|
|
else:
|
|
setattr(to_module, field, from_obj)
|
|
|
|
class _WrappedCall:
|
|
def __init__(self, cls, cls_call):
|
|
self.cls = cls
|
|
self.cls_call = cls_call
|
|
|
|
# Previously, if an error occurred when valid
|
|
# symbolically-traced code was run with an invalid input, the
|
|
# user would see the source of the error as coming from
|
|
# `File "<eval_with_key_N">`, where N is some number. We use
|
|
# this function to generate a more informative error message. We
|
|
# return the traceback itself, a message explaining that the
|
|
# error occurred in a traced Module's generated forward
|
|
# function, and five lines of context surrounding the faulty
|
|
# line
|
|
@staticmethod
|
|
def _generate_error_message(frame_summary: traceback.FrameSummary) -> str:
|
|
# auxiliary variables (for readability)
|
|
err_lineno = frame_summary.lineno
|
|
assert err_lineno is not None
|
|
line = frame_summary.line
|
|
assert line is not None
|
|
err_line_len = len(line)
|
|
all_src_lines = linecache.getlines(frame_summary.filename)
|
|
|
|
# constituent substrings of the error message
|
|
tb_repr = traceback.format_exc()
|
|
custom_msg = ("Call using an FX-traced Module, "
|
|
f"line {err_lineno} of the traced Module's "
|
|
"generated forward function:")
|
|
before_err = "".join(all_src_lines[err_lineno - 2 : err_lineno])
|
|
marker = "~" * err_line_len + "~~~ <--- HERE"
|
|
err_and_after_err = "\n".join(all_src_lines[err_lineno : err_lineno + 2])
|
|
|
|
# joined message
|
|
return "\n".join([tb_repr, custom_msg, before_err, marker, err_and_after_err])
|
|
|
|
def __call__(self, obj, *args, **kwargs):
|
|
try:
|
|
if self.cls_call is not None:
|
|
return self.cls_call(obj, *args, **kwargs)
|
|
else:
|
|
return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc]
|
|
except Exception as e:
|
|
assert e.__traceback__
|
|
topmost_framesummary: traceback.FrameSummary = \
|
|
traceback.StackSummary.extract(traceback.walk_tb(e.__traceback__))[-1] # type: ignore[arg-type]
|
|
if "eval_with_key" in topmost_framesummary.filename:
|
|
print(_WrappedCall._generate_error_message(topmost_framesummary),
|
|
file=sys.stderr)
|
|
raise e.with_traceback(None)
|
|
else:
|
|
raise e
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
class GraphModule(torch.nn.Module):
|
|
"""
|
|
GraphModule is an nn.Module generated from an fx.Graph. Graphmodule has a
|
|
``graph`` attribute, as well as ``code`` and ``forward`` attributes generated
|
|
from that ``graph``.
|
|
|
|
.. warning::
|
|
|
|
When ``graph`` is reassigned, ``code`` and ``forward`` will be automatically
|
|
regenerated. However, if you edit the contents of the ``graph`` without reassigning
|
|
the ``graph`` attribute itself, you must call ``recompile()`` to update the generated
|
|
code.
|
|
"""
|
|
def __new__(cls: 'Type[GraphModule]', *args, **kwargs):
|
|
# each instance of a graph module needs its own forward method
|
|
# so create a new singleton class for each instance.
|
|
# it is a subclass of the user-defined class, the only difference
|
|
# is an extra layer to install the forward method
|
|
|
|
# address issue described at https://github.com/pytorch/pytorch/issues/63883
|
|
# in other words, traverse class hierarchy to fix the redundant class definition problem
|
|
for t in cls.__mro__:
|
|
c = t.__qualname__.split('.')[-1]
|
|
if c != 'GraphModuleImpl':
|
|
cls = t
|
|
break
|
|
|
|
class GraphModuleImpl(cls): # type: ignore[misc, valid-type]
|
|
pass
|
|
return super().__new__(GraphModuleImpl)
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def __init__(self,
|
|
root: Union[torch.nn.Module, Dict[str, Any]],
|
|
graph: Graph,
|
|
class_name: str = 'GraphModule'):
|
|
"""
|
|
Construct a GraphModule.
|
|
|
|
Args:
|
|
|
|
root (Union[torch.nn.Module, Dict[str, Any]):
|
|
``root`` can either be an nn.Module instance or a Dict mapping strings to any attribute type.
|
|
In the case that ``root`` is a Module, any references to Module-based objects (via qualified
|
|
name) in the Graph's Nodes' ``target`` field will be copied over from the respective place
|
|
within ``root``'s Module hierarchy into the GraphModule's module hierarchy.
|
|
In the case that ``root`` is a dict, the qualified name found in a Node's ``target`` will be
|
|
looked up directly in the dict's keys. The object mapped to by the Dict will be copied
|
|
over into the appropriate place within the GraphModule's module hierarchy.
|
|
|
|
graph (Graph): ``graph`` contains the nodes this GraphModule should use for code generation
|
|
|
|
class_name (str): ``name`` denotes the name of this GraphModule for debugging purposes. If it's unset, all
|
|
error messages will report as originating from ``GraphModule``. It may be helpful to set this
|
|
to ``root``'s original name or a name that makes sense within the context of your transform.
|
|
"""
|
|
super().__init__()
|
|
self.__class__.__name__ = class_name
|
|
if isinstance(root, torch.nn.Module):
|
|
if hasattr(root, 'training'):
|
|
self.training = root.training
|
|
for node in graph.nodes:
|
|
if node.op in ['get_attr', 'call_module']:
|
|
assert isinstance(node.target, str)
|
|
_copy_attr(root, self, node.target)
|
|
elif isinstance(root, dict):
|
|
targets_to_copy = []
|
|
for node in graph.nodes:
|
|
if node.op in ['get_attr', 'call_module']:
|
|
assert isinstance(node.target, str)
|
|
if node.target not in root:
|
|
raise RuntimeError('Node ' + str(node) + ' referenced target ' + node.target +
|
|
' but that target was not provided in ``root``!')
|
|
targets_to_copy.append(node.target)
|
|
# Sort targets in ascending order of the # of atoms.
|
|
# This will ensure that less deeply nested attributes are assigned
|
|
# before more deeply nested attributes. For example, foo.bar
|
|
# will be assigned before foo.bar.baz. Otherwise, we might assign
|
|
# the user-provided ``foo.bar`` and wipe out the previously-assigned
|
|
# ``foo.bar.baz``
|
|
targets_to_copy.sort(key=lambda t: t.count('.'))
|
|
for target_to_copy in targets_to_copy:
|
|
_assign_attr(root[target_to_copy], self, target_to_copy)
|
|
else:
|
|
raise RuntimeError('Unsupported type ' + str(root) + ' passed for root!')
|
|
|
|
self.graph = graph
|
|
|
|
# Store the Tracer class responsible for creating a Graph separately as part of the
|
|
# GraphModule state, except when the Tracer is defined in a local namespace.
|
|
# Locally defined Tracers are not pickleable. This is needed because torch.package will
|
|
# serialize a GraphModule without retaining the Graph, and needs to use the correct Tracer
|
|
# to re-create the Graph during deserialization.
|
|
self._tracer_cls = None
|
|
if self.graph._tracer_cls and '<locals>' not in self.graph._tracer_cls.__qualname__:
|
|
self._tracer_cls = self.graph._tracer_cls
|
|
|
|
self._tracer_extras = {}
|
|
if self.graph._tracer_extras:
|
|
self._tracer_extras = self.graph._tracer_extras
|
|
|
|
# Dictionary to store metadata
|
|
self.meta : Dict[str, Any] = {}
|
|
|
|
# TorchScript breaks trying to compile the graph setter because of the
|
|
# continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842
|
|
#
|
|
# Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway
|
|
__jit_unused_properties__ = ['graph']
|
|
|
|
@property
|
|
def graph(self) -> Graph:
|
|
"""
|
|
Return the ``Graph`` underlying this ``GraphModule``
|
|
"""
|
|
return self._graph
|
|
|
|
@graph.setter
|
|
def graph(self, g : Graph) -> None:
|
|
"""
|
|
Set the underlying ``Graph`` for this ``GraphModule``. This will internally
|
|
recompile the ``GraphModule`` so that the generated ``forward()`` function
|
|
corresponds to ``g``
|
|
"""
|
|
assert isinstance(g, Graph), f'Expected a Graph instance, but got {type(g)}'
|
|
self._graph = g
|
|
g.owning_module = self
|
|
self.recompile()
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def to_folder(self, folder: Union[str, os.PathLike], module_name : str = "FxModule"):
|
|
"""Dumps out module to ``folder`` with ``module_name`` so that it can be
|
|
imported with ``from <folder> import <module_name>``
|
|
|
|
Args:
|
|
|
|
folder (Union[str, os.PathLike]): The folder to write the code out to
|
|
|
|
module_name (str): Top-level name to use for the ``Module`` while
|
|
writing out the code
|
|
"""
|
|
folder = Path(folder)
|
|
Path(folder).mkdir(exist_ok=True)
|
|
torch.save(self.state_dict(), folder / 'state_dict.pt')
|
|
tab = " " * 4
|
|
custom_builtins = '\n'.join([v.import_str for v in _custom_builtins.values()])
|
|
model_str = f"""
|
|
import torch
|
|
{custom_builtins}
|
|
|
|
from torch.nn import *
|
|
class {module_name}(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
"""
|
|
|
|
def _gen_model_repr(module_name: str, module: torch.nn.Module) -> Optional[str]:
|
|
safe_reprs = [nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d]
|
|
if type(module) in safe_reprs:
|
|
return f"{module.__repr__()}"
|
|
else:
|
|
return None
|
|
|
|
blobified_modules = []
|
|
for module_name, module in self.named_children():
|
|
module_str = _gen_model_repr(module_name, module)
|
|
if module_str is None:
|
|
module_file = folder / f'{module_name}.pt'
|
|
torch.save(module, module_file)
|
|
blobified_modules.append(module_name)
|
|
module_repr = module.__repr__().replace('\r', ' ').replace('\n', ' ')
|
|
module_str = f"torch.load(r'{module_file}') # {module_repr}"
|
|
model_str += f"{tab*2}self.{module_name} = {module_str}\n"
|
|
|
|
for buffer_name, buffer in self._buffers.items():
|
|
if buffer is None:
|
|
continue
|
|
model_str += f"{tab*2}self.register_buffer('{buffer_name}', torch.empty({list(buffer.shape)}, dtype={buffer.dtype}))\n"
|
|
|
|
for param_name, param in self._parameters.items():
|
|
if param is None:
|
|
continue
|
|
model_str += f"{tab*2}self.{param_name} = torch.nn.Parameter(torch.empty({list(param.shape)}, dtype={param.dtype}))\n"
|
|
|
|
model_str += f"{tab*2}self.load_state_dict(torch.load(r'{folder}/state_dict.pt'))\n"
|
|
model_str += f"{_addindent(self.code, 4)}\n"
|
|
|
|
module_file = folder / 'module.py'
|
|
module_file.write_text(model_str)
|
|
|
|
init_file = folder / '__init__.py'
|
|
init_file.write_text('from .module import *')
|
|
|
|
if len(blobified_modules) > 0:
|
|
warnings.warn("Was not able to save the following children modules as reprs -"
|
|
f"saved as pickled files instead: {blobified_modules}")
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def add_submodule(self, target: str, m: torch.nn.Module) -> bool:
|
|
"""
|
|
Adds the given submodule to ``self``.
|
|
|
|
This installs empty Modules where none exist yet if they are
|
|
subpaths of ``target``.
|
|
|
|
Args:
|
|
target: The fully-qualified string name of the new submodule
|
|
(See example in ``nn.Module.get_submodule`` for how to
|
|
specify a fully-qualified string.)
|
|
m: The submodule itself; the actual object we want to
|
|
install in the current Module
|
|
|
|
Return:
|
|
bool: Whether or not the submodule could be inserted. For
|
|
this method to return True, each object in the chain
|
|
denoted by ``target`` must either a) not exist yet,
|
|
or b) reference an ``nn.Module`` (not a parameter or
|
|
other attribute)
|
|
"""
|
|
*prefix, field = target.split('.')
|
|
mod: torch.nn.Module = self
|
|
|
|
for item in prefix:
|
|
|
|
submod = getattr(mod, item, None)
|
|
|
|
if submod is None:
|
|
submod = torch.nn.Module()
|
|
setattr(mod, item, submod)
|
|
|
|
if not isinstance(submod, torch.nn.Module):
|
|
return False
|
|
|
|
mod = submod
|
|
|
|
mod.add_module(field, m)
|
|
return True
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def delete_submodule(self, target: str) -> bool:
|
|
"""
|
|
Deletes the given submodule from ``self``.
|
|
|
|
The module will not be deleted if ``target`` is not a valid
|
|
target.
|
|
|
|
Args:
|
|
target: The fully-qualified string name of the new submodule
|
|
(See example in ``nn.Module.get_submodule`` for how to
|
|
specify a fully-qualified string.)
|
|
|
|
Returns:
|
|
bool: Whether or not the target string referenced a
|
|
submodule we want to delete. A return value of ``False``
|
|
means that the ``target`` was not a valid reference to
|
|
a submodule.
|
|
"""
|
|
atoms = target.split(".")
|
|
path, target_submod = atoms[:-1], atoms[-1]
|
|
mod: torch.nn.Module = self
|
|
|
|
# Get the parent module
|
|
for item in path:
|
|
|
|
if not hasattr(mod, item):
|
|
return False
|
|
|
|
mod = getattr(mod, item)
|
|
|
|
if not isinstance(mod, torch.nn.Module):
|
|
return False
|
|
|
|
if not hasattr(mod, target_submod):
|
|
return False
|
|
|
|
if not isinstance(getattr(mod, target_submod), torch.nn.Module):
|
|
return False
|
|
|
|
delattr(mod, target_submod)
|
|
return True
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def delete_all_unused_submodules(self) -> None:
|
|
"""
|
|
Deletes all unused submodules from ``self``.
|
|
|
|
A Module is considered "used" if any one of the following is
|
|
true:
|
|
1. It has children that are used
|
|
2. Its forward is called directly via a ``call_module`` node
|
|
3. It has a non-Module attribute that is used from a
|
|
``get_attr`` node
|
|
|
|
This method can be called to clean up an ``nn.Module`` without
|
|
manually calling ``delete_submodule`` on each unused submodule.
|
|
"""
|
|
used: List[str] = []
|
|
|
|
for node in self.graph.nodes:
|
|
|
|
if node.op == "call_module" or node.op == "get_attr":
|
|
|
|
# A list of strings representing the different parts
|
|
# of the path. For exmaple, `foo.bar.baz` gives us
|
|
# ["foo", "bar", "baz"]
|
|
fullpath = node.target.split(".")
|
|
|
|
# If we're looking at multiple parts of a path, join
|
|
# join them with a dot. Otherwise, return that single
|
|
# element without doing anything to it.
|
|
def join_fn(x: str, y: str) -> str:
|
|
return '.'.join([x, y] if y else [x])
|
|
|
|
# Progressively collect all the names of intermediate
|
|
# modules. For example, if we have the target
|
|
# `foo.bar.baz`, we'll add `foo`, `foo.bar`, and
|
|
# `foo.bar.baz` to the list.
|
|
for path in itertools.accumulate(fullpath, join_fn):
|
|
used.append(path)
|
|
|
|
# For a `call_module` node, also register all recursive submodules
|
|
# as used
|
|
if node.op == "call_module":
|
|
try:
|
|
submod = self.get_submodule(node.target)
|
|
|
|
for submod_name, _ in submod.named_modules():
|
|
if submod_name != '':
|
|
used.append('.'.join([node.target, submod_name]))
|
|
except AttributeError:
|
|
# Node referenced nonexistent submodule, don't need to
|
|
# worry about GCing anything
|
|
pass
|
|
|
|
to_delete = [name for name, _ in self.named_modules()
|
|
if name not in used]
|
|
|
|
for name in to_delete:
|
|
self.delete_submodule(name)
|
|
|
|
@property
|
|
def code(self) -> str:
|
|
"""
|
|
Return the Python code generated from the ``Graph`` underlying this
|
|
``GraphModule``.
|
|
"""
|
|
if not hasattr(self, '_code'):
|
|
raise RuntimeError('Code has not been generated! Please report a bug to PyTorch')
|
|
return self._code
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
def recompile(self) -> PythonCode:
|
|
"""
|
|
Recompile this GraphModule from its ``graph`` attribute. This should be
|
|
called after editing the contained ``graph``, otherwise the generated
|
|
code of this ``GraphModule`` will be out of date.
|
|
"""
|
|
if isinstance(self._graph._codegen, _PyTreeCodeGen):
|
|
self._in_spec = self._graph._codegen.pytree_info.in_spec
|
|
self._out_spec = self._graph._codegen.pytree_info.out_spec
|
|
python_code = self._graph.python_code(root_module='self')
|
|
self._code = python_code.src
|
|
|
|
cls = type(self)
|
|
cls.forward = _forward_from_src(self._code, python_code.globals)
|
|
|
|
# Determine whether this class explicitly defines a __call__ implementation
|
|
# to wrap. If it does, save it in order to have wrapped_call invoke it.
|
|
# If it does not, wrapped_call can use a dynamic call to super() instead.
|
|
# In most cases, super().__call__ should be torch.nn.Module.__call__.
|
|
# We do not want to hold a reference to Module.__call__ here; doing so will
|
|
# bypass patching of torch.nn.Module.__call__ done while symbolic tracing.
|
|
cls_call = cls.__call__ if "__call__" in vars(cls) else None
|
|
|
|
if '_wrapped_call' not in vars(cls):
|
|
cls._wrapped_call = _WrappedCall(cls, cls_call) # type: ignore[attr-defined]
|
|
|
|
def call_wrapped(self, *args, **kwargs):
|
|
return self._wrapped_call(self, *args, **kwargs)
|
|
|
|
cls.__call__ = call_wrapped
|
|
|
|
return python_code
|
|
|
|
# Passing Tracer as argument allows subclasses extending fx.GraphModule
|
|
# define their own Tracer (extending fx.Tracer).
|
|
def __reduce_deploy__(self, importer: Importer):
|
|
dict_without_graph = self.__dict__.copy()
|
|
dict_without_graph['_graphmodule_cls_name'] = self.__class__.__name__
|
|
del dict_without_graph['_graph']
|
|
|
|
python_code = self.recompile()
|
|
import_block = _format_import_block(python_code.globals, importer)
|
|
return (reduce_deploy_graph_module, (dict_without_graph, import_block))
|
|
|
|
def __reduce_package__(self, exporter: PackageExporter):
|
|
dict_without_graph = self.__dict__.copy()
|
|
dict_without_graph['_graphmodule_cls_name'] = self.__class__.__name__
|
|
del dict_without_graph['_graph']
|
|
|
|
generated_module_name = f'fx-generated._{exporter.get_unique_id()}'
|
|
python_code = self.recompile()
|
|
import_block = _format_import_block(python_code.globals, exporter.importer)
|
|
module_code = import_block + self.code
|
|
exporter.save_source_string(generated_module_name, module_code)
|
|
return (reduce_package_graph_module, (dict_without_graph, generated_module_name))
|
|
|
|
def __reduce__(self):
|
|
"""
|
|
Serialization of GraphModule. We serialize only the generated code, not
|
|
the underlying ``Graph``. This is because ``Graph`` does not have on-disk
|
|
backward-compatibility guarantees, whereas Python source code does.
|
|
On the deserialization side, we symbolically trace through the generated
|
|
code to regenerate the underlying ``Graph``
|
|
"""
|
|
dict_without_graph = self.__dict__.copy()
|
|
python_code = self.recompile()
|
|
import_block = _format_import_block(python_code.globals, sys_importer)
|
|
del dict_without_graph['_graph']
|
|
return (reduce_graph_module, (dict_without_graph, import_block))
|
|
|
|
# because __reduce__ is defined for serialization,
|
|
# we need to define deepcopy otherwise it will call __reduce__
|
|
# and cause symbolic tracing to occur every time we try to copy the object
|
|
def __deepcopy__(self, memo):
|
|
res = type(self).__new__(type(self))
|
|
memo[id(self)] = res
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__, memo)
|
|
GraphModule.__init__(res, fake_mod, fake_mod.__dict__['_graph'])
|
|
# hooks are lost during `GraphModule.__init__`, so we need to copy over
|
|
# them explicitly, note right now we are only copying state_dict related
|
|
# hooks, to reduce bc-related issues, we can copy forward/backward related
|
|
# hooks in the future as well if needed
|
|
extra_preserved_attrs = [
|
|
"_state_dict_hooks",
|
|
"_load_state_dict_pre_hooks",
|
|
"_load_state_dict_post_hooks"
|
|
]
|
|
for attr in extra_preserved_attrs:
|
|
if attr in self.__dict__:
|
|
setattr(res, attr, copy.deepcopy(self.__dict__[attr], memo))
|
|
res.meta = copy.deepcopy(getattr(self, 'meta', {}), memo)
|
|
if _USER_PRESERVED_ATTRIBUTES_KEY in res.meta:
|
|
for attr_name, attr in res.meta[_USER_PRESERVED_ATTRIBUTES_KEY].items():
|
|
setattr(res, attr_name, attr)
|
|
return res
|
|
|
|
def __copy__(self):
|
|
res = GraphModule(self, self.graph)
|
|
res.meta = getattr(self, 'meta', {})
|
|
return res
|
|
|
|
@compatibility(is_backward_compatible=False)
|
|
def print_readable(self, print_output=True):
|
|
"""
|
|
Return the Python code generated for current GraphModule and its children GraphModules
|
|
"""
|
|
verbose_python_code = self._graph.python_code(root_module='self', verbose=True)
|
|
module_code = verbose_python_code.src
|
|
module_code = module_code.lstrip('\n')
|
|
module_code = f"class {self._get_name()}(torch.nn.Module):\n" + module_code
|
|
module_code = _addindent(module_code, 4)
|
|
|
|
submodule_code_list = [""]
|
|
for submodule in self.children():
|
|
if isinstance(submodule, GraphModule):
|
|
submodule_code_list.append(submodule.print_readable(print_output=False))
|
|
submodule_code = "\n".join(submodule_code_list)
|
|
submodule_code = _addindent(submodule_code, 4)
|
|
|
|
output = module_code + submodule_code
|
|
if print_output:
|
|
print(module_code + submodule_code)
|
|
return output
|
|
|
|
def __str__(self) -> str:
|
|
orig_str = super().__str__()
|
|
print_readable_reminder = "# To see more debug info, please use `graph_module.print_readable()`"
|
|
return '\n'.join([orig_str, self._code, print_readable_reminder])
|
|
|
|
def _replicate_for_data_parallel(self):
|
|
new_gm = self.__copy__()
|
|
new_gm._is_replica = True
|
|
return new_gm
|
|
|
|
# workarounds for issues in __torch_function__
|
|
|
|
# WAR for __torch_function__ not handling tensor lists,
|
|
# fix is in https://github.com/pytorch/pytorch/pull/34725
|
|
# orig_cat = torch.cat
|
|
# def patched_cat(*args, **kwargs):
|
|
# tensors = args[0]
|
|
# for t in tensors:
|
|
# if isinstance(t, Proxy):
|
|
# return t.__torch_function__(patched_cat, (), args, kwargs)
|
|
# return orig_cat(*args, **kwargs)
|
|
# patched_cat.__module__ = 'torch'
|
|
# patched_cat.__name__ = 'cat'
|
|
# torch.cat = patched_cat
|