mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72084
make fsdp folder to be public
ghstack-source-id: 148173447
Test Plan: unit tests
Reviewed By: mrshenli
Differential Revision: D33903417
fbshipit-source-id: 7852a2adc4af09af48a5ffa52ebf210489f834d5
(cherry picked from commit bd06513cfe)
81 lines
2.1 KiB
Python
81 lines
2.1 KiB
Python
# Owner(s): ["oncall: distributed"]
|
|
|
|
import random
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
from torch import distributed as dist
|
|
from torch.distributed.fsdp.utils import (
|
|
_apply_to_tensors,
|
|
)
|
|
from torch.testing._internal.common_utils import (
|
|
TEST_WITH_DEV_DBG_ASAN,
|
|
instantiate_parametrized_tests,
|
|
parametrize,
|
|
run_tests,
|
|
subtest,
|
|
TestCase,
|
|
)
|
|
|
|
|
|
if not dist.is_available():
|
|
print("Distributed not available, skipping tests", file=sys.stderr)
|
|
sys.exit(0)
|
|
|
|
if TEST_WITH_DEV_DBG_ASAN:
|
|
print(
|
|
"Skip dev-asan as torch + multiprocessing spawn have known issues",
|
|
file=sys.stderr,
|
|
)
|
|
sys.exit(0)
|
|
|
|
|
|
class TestUtils(TestCase):
|
|
@parametrize(
|
|
"devices", [["cpu"], ["cuda"], subtest(["cpu", "cuda"], name="cpu_cuda")]
|
|
)
|
|
def test_apply_to_tensors(self, devices):
|
|
if "cuda" in devices and (
|
|
not torch.cuda.is_available() or torch.cuda.device_count() < 1
|
|
):
|
|
raise unittest.SkipTest("Skipped due to lack of GPU")
|
|
|
|
expected = 0
|
|
|
|
def get_a_tensor():
|
|
"""Return a random tensor on random device."""
|
|
dev = random.choice(devices)
|
|
shape = random.choice(((1), (2, 3), (4, 5, 6), (7, 8, 9, 10)))
|
|
t = torch.rand(shape).to(dev)
|
|
nonlocal expected
|
|
expected += t.numel()
|
|
return t
|
|
|
|
# create a mixed bag of data.
|
|
data = [1, "str"]
|
|
data.append({"key1": get_a_tensor(), "key2": {1: get_a_tensor()}, "key3": 3})
|
|
data.insert(0, set(["x", get_a_tensor(), get_a_tensor()]))
|
|
data.append(([1], get_a_tensor(), (1), [get_a_tensor()], set((1, 2))))
|
|
od = dict()
|
|
od["k"] = "value"
|
|
data.append(od)
|
|
|
|
total = 0
|
|
|
|
def fn(t):
|
|
nonlocal total
|
|
total += t.numel()
|
|
return t
|
|
|
|
new_data = _apply_to_tensors(fn, data)
|
|
self.assertEqual(total, expected)
|
|
for i, v in enumerate(data):
|
|
self.assertEqual(type(new_data[i]), type(v))
|
|
|
|
|
|
instantiate_parametrized_tests(TestUtils)
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|