pytorch/torch/utils/cpp_extension.py
Peter Goldsborough 22fe542b8e Use TORCH_EXTENSION_NAME macro to avoid mismatched module/extension name (#5277)
* Warn users about mismatched module/extension name

* Define TORCH_EXTENSION_NAME macro
2018-02-16 22:31:04 -05:00

432 lines
16 KiB
Python

import glob
import imp
import os
import re
import setuptools
import subprocess
import sys
import sysconfig
import tempfile
import warnings
import torch
from setuptools.command.build_ext import build_ext
def _find_cuda_home():
'''Finds the CUDA install path.'''
# Guess #1
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home is None:
# Guess #2
if sys.platform == 'win32':
cuda_home = glob.glob(
'C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*')
else:
cuda_home = '/usr/local/cuda'
if not os.path.exists(cuda_home):
# Guess #3
try:
which = 'where' if sys.platform == 'win32' else 'which'
nvcc = subprocess.check_output([which, 'nvcc']).decode()
cuda_home = os.path.dirname(os.path.dirname(nvcc))
except Exception:
cuda_home = None
return cuda_home
MINIMUM_GCC_VERSION = (4, 9)
ABI_INCOMPATIBILITY_WARNING = '''
Your compiler ({}) may be ABI-incompatible with PyTorch.
Please use a compiler that is ABI-compatible with GCC 4.9 and above.
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.'''
CUDA_HOME = _find_cuda_home() if torch.cuda.is_available() else None
def check_compiler_abi_compatibility(compiler):
'''
Verifies that the given compiler is ABI-compatible with PyTorch.
Arguments:
compiler (str): The compiler executable name to check (e.g. 'g++')
Returns:
False if the compiler is (likely) ABI-incompatible with PyTorch,
else True.
'''
try:
info = subprocess.check_output('{} --version'.format(compiler).split())
except Exception:
_, error, _ = sys.exc_info()
warnings.warn('Error checking compiler version: {}'.format(error))
else:
info = info.decode().lower()
if 'gcc' in info:
# Sometimes the version is given as "major.x" instead of semver.
version = re.search(r'(\d+)\.(\d+|x)', info)
if version is not None:
major, minor = version.groups()
minor = 0 if minor == 'x' else int(minor)
if (int(major), minor) >= MINIMUM_GCC_VERSION:
return True
else:
# Append the detected version for the warning.
compiler = '{} {}'.format(compiler, version.group(0))
warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
return False
class BuildExtension(build_ext):
'''A custom build extension for adding compiler-specific options.'''
def build_extensions(self):
# On some platforms, like Windows, compiler_cxx is not available.
if hasattr(self.compiler, 'compiler_cxx'):
compiler = self.compiler.compiler_cxx[0]
else:
compiler = os.environ.get('CXX', 'c++')
check_compiler_abi_compatibility(compiler)
for extension in self.extensions:
define = '-DTORCH_EXTENSION_NAME={}'.format(extension.name)
extension.extra_compile_args = [define]
# Register .cu and .cuh as valid source extensions.
self.compiler.src_extensions += ['.cu', '.cuh']
# Save the original _compile method for later.
original_compile = self.compiler._compile
def wrap_compile(obj, src, ext, cc_args, cflags, pp_opts):
try:
original_compiler = self.compiler.compiler_so
if _is_cuda_file(src):
nvcc = _join_cuda_home('bin', 'nvcc')
self.compiler.set_executable('compiler_so', nvcc)
if isinstance(cflags, dict):
cflags = cflags['nvcc']
cflags += ['-c', '--compiler-options', "'-fPIC'"]
else:
if isinstance(cflags, dict):
cflags = cflags['cxx']
cflags.append('-std=c++11')
original_compile(obj, src, ext, cc_args, cflags, pp_opts)
finally:
# Put the original compiler back in place.
self.compiler.set_executable('compiler_so', original_compiler)
# Monkey-patch the _compile method.
self.compiler._compile = wrap_compile
build_ext.build_extensions(self)
def CppExtension(name, sources, *args, **kwargs):
'''
Create a setuptools.Extension instance for C++.
Convenience method that creates a `setuptools.Extension` with the bare
minimum (but often sufficient) arguments to build a C++ extension.
All arguments are forwarded to the setuptools.Extension constructor.
'''
include_dirs = kwargs.get('include_dirs', [])
include_dirs += include_paths()
kwargs['include_dirs'] = include_dirs
kwargs['language'] = 'c++'
return setuptools.Extension(name, sources, *args, **kwargs)
def CUDAExtension(name, sources, *args, **kwargs):
'''
Create a setuptools.Extension instance for CUDA/C++.
Convenience method that creates a `setuptools.Extension` with the bare
minimum (but often sufficient) arguments to build a CUDA/C++ extension.
This includes the CUDA include path, library path and runtime library.
All arguments are forwarded to the setuptools.Extension constructor.
'''
library_dirs = kwargs.get('library_dirs', [])
library_dirs.append(_join_cuda_home('lib64'))
kwargs['library_dirs'] = library_dirs
libraries = kwargs.get('libraries', [])
libraries.append('cudart')
kwargs['libraries'] = libraries
include_dirs = kwargs.get('include_dirs', [])
include_dirs += include_paths(cuda=True)
kwargs['include_dirs'] = include_dirs
kwargs['language'] = 'c++'
return setuptools.Extension(name, sources, *args, **kwargs)
def include_paths(cuda=False):
'''
Return include paths required to build a C++ extension.
Args:
cuda: If `True`, includes CUDA include paths.
Returns:
A list of include path strings.
'''
here = os.path.abspath(__file__)
torch_path = os.path.dirname(os.path.dirname(here))
paths = [os.path.join(torch_path, 'lib', 'include')]
if cuda:
paths.append(_join_cuda_home('include'))
return paths
def load(name,
sources,
extra_cflags=None,
extra_cuda_cflags=None,
extra_ldflags=None,
extra_include_paths=None,
build_directory=None,
verbose=False):
'''
Loads a C++ PyTorch extension.
To load an extension, a Ninja build file is emitted, which is used to
compile the given sources into a dynamic library. This library is
subsequently loaded into the current Python process as a module and
returned from this function, ready for use.
By default, the directory to which the build file is emitted and the
resulting library compiled to is `<tmp>/torch_extensions`, where `<tmp>` is
the temporary folder on the current platform. This location can be
overriden in two ways. First, if the `TORCH_EXTENSIONS_DIR` environment
variable is set, it replaces `<tmp>` and all extensions will be compiled
into subfolders of this directory. Second, if the `build_directory`
argument to this function is supplied, it overrides the entire path, i.e.
the library will be compiled into that folder directly.
To compile the sources, the default system compiler (`c++`) is used, which
can be overriden by setting the CXX environment variable. To pass
additional arguments to the compilation process, `extra_cflags` or
`extra_ldflags` can be provided. For example, to compile your extension
with optimizations, pass `extra_cflags=['-O3']`. You can also use
`extra_cflags` to pass further include directories (`-I`).
CUDA support with mixed compilation is provided. Simply pass CUDA source
files (`.cu` or `.cuh`) along with other sources. Such files will be
detected and compiled with nvcc rather than the C++ compiler. This includes
passing the CUDA lib64 directory as a library directory, and linking
`cudart`. You can pass additional flags to nvcc via `extra_cuda_cflags`,
just like with `extra_cflags` for C++. Various heuristics for finding the
CUDA install directory are used, which usually work fine. If not, setting
the `CUDA_HOME` environment variable is the safest option.
Args:
name: The name of the extension to build. This MUST be the same as the
name of the pybind11 module!
sources: A list of relative or absolute paths to C++ source files.
extra_cflags: optional list of compiler flags to forward to the build.
extra_cuda_cflags: optional list of compiler flags to forward to nvcc
when building CUDA sources.
extra_ldflags: optional list of linker flags to forward to the build.
extra_include_paths: optional list of include directories to forward
to the build.
build_directory: optional path to use as build workspace.
verbose: If `True`, turns on verbose logging of load steps.
Returns:
The loaded PyTorch extension as a Python module.
'''
verify_ninja_availability()
# Allows sources to be a single path or a list of paths.
if isinstance(sources, str):
sources = [sources]
if build_directory is None:
build_directory = _get_build_directory(name, verbose)
with_cuda = any(map(_is_cuda_file, sources))
if with_cuda:
if verbose:
print('Detected CUDA files, patching ldflags')
extra_ldflags = extra_ldflags or []
extra_ldflags.append('-L{}'.format(_join_cuda_home('lib64')))
extra_ldflags.append('-lcudart')
build_file_path = os.path.join(build_directory, 'build.ninja')
if verbose:
print('Emitting ninja build file {}...'.format(build_file_path))
# NOTE: Emitting a new ninja build file does not cause re-compilation if
# the sources did not change, so it's ok to re-emit (and it's fast).
_write_ninja_file(
path=build_file_path,
name=name,
sources=sources,
extra_cflags=extra_cflags or [],
extra_cuda_cflags=extra_cuda_cflags or [],
extra_ldflags=extra_ldflags or [],
extra_include_paths=extra_include_paths or [],
with_cuda=with_cuda)
if verbose:
print('Building extension module {}...'.format(name))
_build_extension_module(name, build_directory)
if verbose:
print('Loading extension module {}...'.format(name))
return _import_module_from_library(name, build_directory)
def verify_ninja_availability():
with open(os.devnull, 'wb') as devnull:
try:
subprocess.check_call('ninja --version'.split(), stdout=devnull)
except OSError:
raise RuntimeError("Ninja is required to load C++ extensions")
def _get_build_directory(name, verbose):
root_extensions_directory = os.environ.get('TORCH_EXTENSIONS_DIR')
if root_extensions_directory is None:
# tempfile.gettempdir() will be /tmp on UNIX and \TEMP on Windows.
root_extensions_directory = os.path.join(tempfile.gettempdir(),
'torch_extensions')
if verbose:
print('Using {} as PyTorch extensions root...'.format(
root_extensions_directory))
build_directory = os.path.join(root_extensions_directory, name)
if not os.path.exists(build_directory):
if verbose:
print('Creating extension directory {}...'.format(build_directory))
# This is like mkdir -p, i.e. will also create parent directories.
os.makedirs(build_directory)
return build_directory
def _build_extension_module(name, build_directory):
try:
subprocess.check_output(
['ninja', '-v'], stderr=subprocess.STDOUT, cwd=build_directory)
except subprocess.CalledProcessError:
# Python 2 and 3 compatible way of getting the error object.
_, error, _ = sys.exc_info()
# error.output contains the stdout and stderr of the build attempt.
raise RuntimeError("Error building extension '{}': {}".format(
name, error.output.decode()))
def _import_module_from_library(module_name, path):
# https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
file, path, description = imp.find_module(module_name, [path])
# Close the .so file after load.
with file:
return imp.load_module(module_name, file, path, description)
def _write_ninja_file(path,
name,
sources,
extra_cflags,
extra_cuda_cflags,
extra_ldflags,
extra_include_paths,
with_cuda=False):
# Version 1.3 is required for the `deps` directive.
config = ['ninja_required_version = 1.3']
config.append('cxx = {}'.format(os.environ.get('CXX', 'c++')))
if with_cuda:
config.append('nvcc = {}'.format(_join_cuda_home('bin', 'nvcc')))
# Turn into absolute paths so we can emit them into the ninja build
# file wherever it is.
sources = [os.path.abspath(file) for file in sources]
includes = [os.path.abspath(file) for file in extra_include_paths]
# include_paths() gives us the location of torch/torch.h
includes += include_paths(with_cuda)
# sysconfig.get_paths()['include'] gives us the location of Python.h
includes.append(sysconfig.get_paths()['include'])
cflags = ['-fPIC', '-std=c++11', '-DTORCH_EXTENSION_NAME={}'.format(name)]
cflags += ['-I{}'.format(include) for include in includes]
cflags += extra_cflags
flags = ['cflags = {}'.format(' '.join(cflags))]
if with_cuda:
cuda_flags = "--compiler-options '-fPIC'"
extra_flags = ' '.join(extra_cuda_cflags)
flags.append('cuda_flags = {} {}'.format(cuda_flags, extra_flags))
ldflags = ['-shared'] + extra_ldflags
# The darwin linker needs explicit consent to ignore unresolved symbols
if sys.platform == 'darwin':
ldflags.append('-undefined dynamic_lookup')
flags.append('ldflags = {}'.format(' '.join(ldflags)))
# See https://ninja-build.org/build.ninja.html for reference.
compile_rule = ['rule compile']
compile_rule.append(
' command = $cxx -MMD -MF $out.d $cflags -c $in -o $out')
compile_rule.append(' depfile = $out.d')
compile_rule.append(' deps = gcc')
if with_cuda:
cuda_compile_rule = ['rule cuda_compile']
cuda_compile_rule.append(
' command = $nvcc $cuda_flags -c $in -o $out')
link_rule = ['rule link']
link_rule.append(' command = $cxx $ldflags $in -o $out')
# Emit one build rule per source to enable incremental build.
object_files = []
build = []
for source_file in sources:
# '/path/to/file.cpp' -> 'file'
file_name = os.path.splitext(os.path.basename(source_file))[0]
target = '{}.o'.format(file_name)
object_files.append(target)
rule = 'cuda_compile' if _is_cuda_file(source_file) else 'compile'
build.append('build {}: {} {}'.format(target, rule, source_file))
library_target = '{}.so'.format(name)
link = ['build {}: link {}'.format(library_target, ' '.join(object_files))]
default = ['default {}'.format(library_target)]
# 'Blocks' should be separated by newlines, for visual benefit.
blocks = [config, flags, compile_rule]
if with_cuda:
blocks.append(cuda_compile_rule)
blocks += [link_rule, build, link, default]
with open(path, 'w') as build_file:
for block in blocks:
lines = '\n'.join(block)
build_file.write('{}\n\n'.format(lines))
def _join_cuda_home(*paths):
'''
Joins paths with CUDA_HOME, or raises an error if it CUDA_HOME is not set.
This is basically a lazy way of raising an error for missing $CUDA_HOME
only once we need to get any CUDA-specific path.
'''
if CUDA_HOME is None:
raise EnvironmentError('CUDA_HOME environment variable is not set. '
'Please set it to your CUDA install root.')
return os.path.join(CUDA_HOME, *paths)
def _is_cuda_file(path):
return os.path.splitext(path)[1] in ['.cu', '.cuh']