mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44684 The ad-hoc quantization benchmarking script in D23689062 recently highlighted that quantized ops were surprisingly slow after the introduction of support for custom ops in torch.fx in D23203204 (f15e27265f). Using strobelight, it's immediately clear that up to 66% of samples were seen in `c10::get_backtrace`, which is descends from `torch::is_tensor_and_apppend_overloaded -> torch::check_has_torch_function -> torch::PyTorch_LookupSpecial -> PyObject_HasAttrString -> PyObject_GetAttrString`. I'm no expert by any means so please correct any/all misinterpretation, but it appears that: - `check_has_torch_function` only needs to return a bool - `PyTorch_LookupSpecial` should return `NULL` if a matching method is not found on the object - in the impl of `PyTorch_LookupSpecial` the return value from `PyObject_HasAttrString` only serves as a bool to return early, but ultimately ends up invoking `PyObject_GetAttrString`, which raises, spawning the generation of a backtrace - `PyObject_FastGetAttrString` returns `NULL` (stolen ref to an empty py::object if the if/else if isn't hit) if the method is not found, anyway, so it could be used singularly instead of invoking both `GetAttrString` and `FastGetAttrString` - D23203204 (f15e27265f) compounded (but maybe not directly caused) the problem by increasing the number of invocations so, removing it in this diff and seeing how many things break :) before: strobelight: see internal section output from D23689062 script: ``` $ ./buck-out/gen/scripts/v/test_pt_quant_perf.par Sequential( (0): Quantize(scale=tensor([0.0241]), zero_point=tensor([60]), dtype=torch.quint8) (1): QuantizedLinear(in_features=4, out_features=4, scale=0.017489388585090637, zero_point=68, qscheme=torch.per_tensor_affine) (2): DeQuantize() ) fp 0.010896682739257812 q 0.11908197402954102 ``` after: strobelight: see internal section output from D23689062 script: ``` $ ./buck-out/gen/scripts/v/test_pt_quant_perf.par Sequential( (0): Quantize(scale=tensor([0.0247]), zero_point=tensor([46]), dtype=torch.quint8) (1): QuantizedLinear(in_features=4, out_features=4, scale=0.012683945707976818, zero_point=41, qscheme=torch.per_tensor_affine) (2): DeQuantize() ) fp 0.011141300201416016 q 0.022639036178588867 ``` which roughly restores original performance seen in P142370729 UPDATE: 9/22 mode/opt benchmarks ``` buck run //scripts/x:test_pt_quant_perf mode/opt Sequential( (0): Quantize(scale=tensor([0.0263]), zero_point=tensor([82]), dtype=torch.quint8) (1): QuantizedLinear(in_features=4, out_features=4, scale=0.021224206313490868, zero_point=50, qscheme=torch.per_tensor_affine) (2): DeQuantize() ) fp 0.002968311309814453 q 0.5138928890228271 ``` with patch: ``` buck run //scripts/x:test_pt_quant_perf mode/opt Sequential( (0): Quantize(scale=tensor([0.0323]), zero_point=tensor([70]), dtype=torch.quint8) (1): QuantizedLinear(in_features=4, out_features=4, scale=0.017184294760227203, zero_point=61, qscheme=torch.per_tensor_affine) (2): DeQuantize() ) fp 0.0026655197143554688 q 0.0064449310302734375 ``` Reviewed By: ezyang Differential Revision: D23697334 fbshipit-source-id: f756d744688615e01c94bf5c48c425747458fb33
832 lines
28 KiB
C++
832 lines
28 KiB
C++
#pragma once
|
|
|
|
// Parse arguments to Python functions implemented in C++
|
|
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
|
|
// the types relevant to PyTorch and distinguishes between overloaded function
|
|
// signatures.
|
|
//
|
|
// Example:
|
|
//
|
|
// static PythonArgParser parser({
|
|
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
|
|
// "norm(Scalar p=2)",
|
|
// });
|
|
// ParsedArgs<3> parsed_args;
|
|
// auto r = parser.parse(args, kwargs, parsed_args);
|
|
// if (r.idx == 0) {
|
|
// norm(r.scalar(0), r.int64(1), r.bool(0));
|
|
// } else {
|
|
// norm(r.scalar(0));
|
|
// }
|
|
//
|
|
// We auto-generate most uses of PythonArgParser; the generated files
|
|
// are torch/csrc/autograd/generated/python_*.cpp
|
|
//
|
|
// Some gotchas that you should watch out for:
|
|
//
|
|
// - Note [Order of overloads matters]
|
|
// Order of overloads matters. A set of input arguments may
|
|
// bind to multiple argument specs; we will always pick the
|
|
// first one in PythonArgParser. However, when you are writing
|
|
// overloads in, e.g., native_functions.yaml, you don't have to
|
|
// worry about what order you write them, because the code
|
|
// generation logic always gives the overloads a canonical
|
|
// order, where Tensor overloads come first, before Scalar overloads.
|
|
// This logic is in sort_declarations in
|
|
// tools/autograd/gen_python_functions.py
|
|
//
|
|
// - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
|
|
// Scalar and Tensor, UNLESS they require grad (in which case
|
|
// they only bind to Tensor).
|
|
|
|
|
|
#include <torch/csrc/python_headers.h>
|
|
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/Dtype.h>
|
|
#include <torch/csrc/DynamicTypes.h>
|
|
#include <torch/csrc/Exceptions.h>
|
|
#include <torch/csrc/Generator.h>
|
|
#include <torch/csrc/MemoryFormat.h>
|
|
#include <torch/csrc/QScheme.h>
|
|
#include <torch/csrc/Layout.h>
|
|
#include <torch/csrc/autograd/python_variable.h>
|
|
#include <torch/csrc/jit/frontend/tracer.h>
|
|
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/python_dimname.h>
|
|
#include <torch/csrc/tensor/python_tensor.h>
|
|
#include <torch/csrc/utils/numpy_stub.h>
|
|
#include <torch/csrc/utils/object_ptr.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_numbers.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <torch/csrc/utils/disable_torch_function.h>
|
|
#include <torch/csrc/utils/six.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
#include <array>
|
|
#include <cstddef>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace torch {
|
|
|
|
enum class ParameterType {
|
|
TENSOR, SCALAR, INT64, DOUBLE, COMPLEX, TENSOR_LIST, INT_LIST, GENERATOR,
|
|
BOOL, STORAGE, PYOBJECT, SCALARTYPE, LAYOUT, MEMORY_FORMAT, DEVICE, STRING,
|
|
DIMNAME, DIMNAME_LIST, QSCHEME, FLOAT_LIST
|
|
};
|
|
|
|
struct FunctionParameter;
|
|
struct FunctionSignature;
|
|
struct PythonArgs;
|
|
|
|
// Contains bound Python arguments in declaration order
|
|
template<int N>
|
|
struct ParsedArgs {
|
|
ParsedArgs() : args() { }
|
|
PyObject* args[N];
|
|
};
|
|
|
|
struct PythonArgParser {
|
|
explicit PythonArgParser(std::vector<std::string> fmts, bool traceable=false);
|
|
|
|
// meant only for `torch` functions.
|
|
template<int N>
|
|
inline PythonArgs parse(PyObject* self, PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
|
|
|
|
template<int N>
|
|
inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
|
|
|
|
inline PythonArgs parse(PyObject* self, ParsedArgs<0>& dst);
|
|
|
|
// Formatted strings of non-hidden signatures
|
|
std::vector<std::string> get_signatures() const;
|
|
|
|
private:
|
|
[[noreturn]]
|
|
void print_error(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
|
|
void check_deprecated(const FunctionSignature & signature);
|
|
PythonArgs raw_parse(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* parsed_args[]);
|
|
|
|
std::vector<FunctionSignature> signatures_;
|
|
std::string function_name;
|
|
ssize_t max_args;
|
|
bool traceable;
|
|
};
|
|
|
|
struct PYBIND11_EXPORT FunctionSignature {
|
|
explicit FunctionSignature(const std::string& fmt, int index);
|
|
|
|
bool parse(PyObject* self, PyObject* args, PyObject* kwargs, PyObject* dst[], bool raise_exception);
|
|
|
|
std::string toString() const;
|
|
|
|
std::string name;
|
|
std::vector<FunctionParameter> params;
|
|
std::vector<py::handle> overloaded_args;
|
|
ssize_t min_args;
|
|
ssize_t max_args;
|
|
ssize_t max_pos_args;
|
|
int index;
|
|
bool hidden;
|
|
bool deprecated;
|
|
bool disable_torch_function;
|
|
};
|
|
|
|
struct PythonArgs {
|
|
PythonArgs(bool traceable, const FunctionSignature& signature, PyObject** args)
|
|
: idx(signature.index)
|
|
, traceable(traceable)
|
|
, signature(signature)
|
|
, args(args) {}
|
|
|
|
int idx;
|
|
bool traceable;
|
|
const FunctionSignature& signature;
|
|
PyObject** args;
|
|
|
|
inline bool has_torch_function();
|
|
inline std::string get_func_name();
|
|
inline at::Tensor tensor(int i);
|
|
inline c10::optional<at::Tensor> optionalTensor(int i);
|
|
inline at::Scalar scalar(int i);
|
|
inline at::Scalar scalarWithDefault(int i, at::Scalar default_scalar);
|
|
inline std::vector<at::Tensor> tensorlist(int i);
|
|
template<int N>
|
|
inline std::array<at::Tensor, N> tensorlist_n(int i);
|
|
inline std::vector<int64_t> intlist(int i);
|
|
inline c10::OptionalArray<int64_t> intlistOptional(int i);
|
|
inline std::vector<int64_t> intlistWithDefault(int i, std::vector<int64_t> default_intlist);
|
|
inline c10::optional<at::Generator> generator(int i);
|
|
inline at::Storage storage(int i);
|
|
inline at::ScalarType scalartype(int i);
|
|
inline at::ScalarType scalartypeWithDefault(int i, at::ScalarType default_scalartype);
|
|
inline c10::optional<at::ScalarType> scalartypeOptional(int i);
|
|
inline c10::optional<at::Scalar> scalarOptional(int i);
|
|
inline c10::optional<int64_t> toInt64Optional(int i);
|
|
inline c10::optional<bool> toBoolOptional(int i);
|
|
inline c10::optional<double> toDoubleOptional(int i);
|
|
inline c10::OptionalArray<double> doublelistOptional(int i);
|
|
inline at::Layout layout(int i);
|
|
inline at::Layout layoutWithDefault(int i, at::Layout default_layout);
|
|
inline c10::optional<at::Layout> layoutOptional(int i);
|
|
inline at::Device device(int i);
|
|
inline at::Device deviceWithDefault(int i, const at::Device& default_device);
|
|
inline c10::optional<at::Device> deviceOptional(int i);
|
|
inline at::Dimname dimname(int i);
|
|
inline std::vector<at::Dimname> dimnamelist(int i);
|
|
inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
|
|
inline at::MemoryFormat memoryformat(int i);
|
|
inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
|
|
inline at::QScheme toQScheme(int i);
|
|
inline std::string string(int i);
|
|
inline c10::optional<std::string> stringOptional(int i);
|
|
inline PyObject* pyobject(int i);
|
|
inline int64_t toInt64(int i);
|
|
inline int64_t toInt64WithDefault(int i, int64_t default_int);
|
|
inline double toDouble(int i);
|
|
inline double toDoubleWithDefault(int i, double default_double);
|
|
inline c10::complex<double> toComplex(int i);
|
|
inline c10::complex<double> toComplexWithDefault(int i, c10::complex<double> default_complex);
|
|
inline bool toBool(int i);
|
|
inline bool toBoolWithDefault(int i, bool default_bool);
|
|
inline bool isNone(int i);
|
|
|
|
private:
|
|
at::Tensor tensor_slow(int i);
|
|
at::Scalar scalar_slow(int i);
|
|
};
|
|
|
|
struct FunctionParameter {
|
|
FunctionParameter(const std::string& fmt, bool keyword_only);
|
|
|
|
bool check(PyObject* obj, std::vector<py::handle> &overloaded_args, int argnum);
|
|
|
|
void set_default_str(const std::string& str);
|
|
std::string type_name() const;
|
|
|
|
ParameterType type_;
|
|
bool optional;
|
|
bool allow_none;
|
|
bool keyword_only;
|
|
bool allow_numbers_as_tensors = false;
|
|
int size;
|
|
std::string name;
|
|
// having this as a raw PyObject * will presumably leak it, but these are only held by static objects
|
|
// anyway, and Py_Finalize can already be called when this is destructed.
|
|
PyObject *python_name;
|
|
at::SmallVector<PyObject *, 5> numpy_python_names;
|
|
at::Scalar default_scalar;
|
|
std::vector<int64_t> default_intlist;
|
|
union {
|
|
bool default_bool;
|
|
int64_t default_int;
|
|
double default_double;
|
|
double default_complex[2]; // see Scalar
|
|
at::ScalarType default_scalartype;
|
|
at::Layout default_layout;
|
|
};
|
|
};
|
|
|
|
template<int N>
|
|
inline PythonArgs PythonArgParser::parse(PyObject* self, PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst) {
|
|
if (N < max_args) {
|
|
throw ValueError("PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
|
|
(int)max_args, N);
|
|
}
|
|
return raw_parse(self, args, kwargs, dst.args);
|
|
}
|
|
|
|
template<int N>
|
|
inline PythonArgs PythonArgParser::parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst) {
|
|
return parse(nullptr, args, kwargs, dst);
|
|
}
|
|
|
|
inline PythonArgs PythonArgParser::parse(PyObject* self, ParsedArgs<0>& dst) {
|
|
return parse(self, nullptr, nullptr, dst);
|
|
}
|
|
|
|
inline bool PythonArgs::has_torch_function(){
|
|
return !this->signature.overloaded_args.empty();
|
|
}
|
|
|
|
inline std::string PythonArgs::get_func_name(){
|
|
return signature.name;
|
|
}
|
|
|
|
inline at::Tensor PythonArgs::tensor(int i) {
|
|
if (args[i] && THPVariable_CheckExact(args[i])) {
|
|
return reinterpret_cast<THPVariable*>(args[i])->cdata;
|
|
}
|
|
return tensor_slow(i);
|
|
}
|
|
|
|
inline c10::optional<at::Tensor> PythonArgs::optionalTensor(int i) {
|
|
at::Tensor t = tensor(i);
|
|
if (t.defined()) {
|
|
return t;
|
|
} else {
|
|
return c10::nullopt;
|
|
}
|
|
}
|
|
|
|
inline at::Scalar PythonArgs::scalar(int i) {
|
|
if (!args[i]) return signature.params[i].default_scalar;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline at::Scalar PythonArgs::scalarWithDefault(int i, at::Scalar default_scalar) {
|
|
if (!args[i]) return default_scalar;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return scalar_slow(i);
|
|
}
|
|
|
|
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
|
|
if (!args[i]) return std::vector<at::Tensor>();
|
|
auto tuple = six::isTuple(args[i]);
|
|
THPObjectPtr arg = six::maybeAsTuple(args[i]);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
|
|
std::vector<at::Tensor> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
|
|
// This is checked by the argument parser so it's safe to cast without checking
|
|
// if this is a tensor first
|
|
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
template<int N>
|
|
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
|
|
auto res = std::array<at::Tensor, N>();
|
|
if (!args[i]) return res;
|
|
auto tuple = six::isTuple(args[i]);
|
|
THPObjectPtr arg = six::maybeAsTuple(args[i]);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
|
|
if (size != N) {
|
|
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
|
|
}
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx) : PyList_GET_ITEM(arg.get(), idx);
|
|
// This is checked by the argument parser so it's safe to cast without checking
|
|
// if this is a tensor first
|
|
res[idx] = reinterpret_cast<THPVariable*>(obj)->cdata;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline std::vector<int64_t> PythonArgs::intlist(int i) {
|
|
return intlistWithDefault(i, signature.params[i].default_intlist);
|
|
}
|
|
|
|
inline std::vector<int64_t> PythonArgs::intlistWithDefault(int i, std::vector<int64_t> default_intlist) {
|
|
if (!args[i]) return default_intlist;
|
|
PyObject* arg = args[i];
|
|
auto size = signature.params[i].size;
|
|
if (size > 0 && THPUtils_checkLong(arg)) {
|
|
return std::vector<int64_t>(size, THPUtils_unpackIndex(arg));
|
|
}
|
|
auto tuple = PyTuple_Check(arg);
|
|
size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<int64_t> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
try {
|
|
// Elements of torch.Size are tensors during tracing, and we need to record extra
|
|
// information before they are turned into an IntArrayRef
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
|
|
auto & var = THPVariable_Unpack(obj);
|
|
jit::tracer::ArgumentStash::stashIntArrayRefElem(
|
|
signature.params[i].name, size, idx, var);
|
|
res[idx] = var.item<int64_t>();
|
|
continue;
|
|
} else {
|
|
res[idx] = THPUtils_unpackIndex(obj);
|
|
}
|
|
} catch (const std::exception &e) {
|
|
throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %d",
|
|
signature.name.c_str(), signature.params[i].name.c_str(),
|
|
signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline c10::OptionalArray<int64_t> PythonArgs::intlistOptional(int i) {
|
|
if (!args[i]) {
|
|
return {};
|
|
}
|
|
return intlist(i);
|
|
}
|
|
|
|
inline c10::OptionalArray<double> PythonArgs::doublelistOptional(int i) {
|
|
if (!args[i]) {
|
|
return {};
|
|
}
|
|
PyObject* arg = args[i];
|
|
auto tuple = PyTuple_Check(arg);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<double> res(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
try {
|
|
res[idx] = THPUtils_unpackDouble(obj);
|
|
} catch (const std::exception &e) {
|
|
throw TypeError("%s(): argument '%s' must be %s, but found element of type %s at pos %d",
|
|
signature.name.c_str(), signature.params[i].name.c_str(),
|
|
signature.params[i].type_name().c_str(), Py_TYPE(obj)->tp_name, idx + 1);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline at::ScalarType PythonArgs::scalartypeWithDefault(int i, at::ScalarType default_scalartype) {
|
|
if (!args[i]) return default_scalartype;
|
|
return scalartype(i);
|
|
}
|
|
|
|
inline at::ScalarType PythonArgs::scalartype(int i) {
|
|
if (!args[i]) {
|
|
auto scalartype = signature.params[i].default_scalartype;
|
|
return (scalartype == at::ScalarType::Undefined) ?
|
|
torch::tensors::get_default_scalar_type() : scalartype;
|
|
}
|
|
PyObject *obj = args[i];
|
|
if (obj == (PyObject*)&PyFloat_Type) {
|
|
return at::ScalarType::Double;
|
|
}
|
|
if (obj == (PyObject*)&PyBool_Type) {
|
|
return at::ScalarType::Bool;
|
|
}
|
|
if (obj == (PyObject*)&PyLong_Type) {
|
|
return at::ScalarType::Long;
|
|
}
|
|
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
|
|
}
|
|
|
|
inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return scalartype(i);
|
|
}
|
|
|
|
inline at::Layout PythonArgs::layout(int i) {
|
|
if (!args[i]) return signature.params[i].default_layout;
|
|
return reinterpret_cast<THPLayout*>(args[i])->layout;
|
|
}
|
|
|
|
inline at::Layout PythonArgs::layoutWithDefault(int i, at::Layout default_layout) {
|
|
if (!args[i]) return default_layout;
|
|
return layout(i);
|
|
}
|
|
|
|
inline c10::optional<at::Layout> PythonArgs::layoutOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return layout(i);
|
|
}
|
|
|
|
inline at::Device PythonArgs::device(int i) {
|
|
if (!args[i]) {
|
|
return at::Device(backendToDeviceType(dispatchKeyToBackend(torch::tensors::get_default_dispatch_key())));
|
|
}
|
|
if (THPDevice_Check(args[i])) {
|
|
const auto device = reinterpret_cast<THPDevice*>(args[i]);
|
|
return device->device;
|
|
}
|
|
if (THPUtils_checkLong(args[i])) {
|
|
const auto device_index = THPUtils_unpackLong(args[i]);
|
|
TORCH_CHECK(device_index >= 0, "Device index must not be negative");
|
|
return at::Device(DeviceType::CUDA, device_index);
|
|
}
|
|
const std::string &device_str = THPUtils_unpackString(args[i]);
|
|
return at::Device(device_str);
|
|
}
|
|
|
|
inline at::Device PythonArgs::deviceWithDefault(int i, const at::Device& default_device) {
|
|
if (!args[i]) return default_device;
|
|
return device(i);
|
|
}
|
|
|
|
inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return device(i);
|
|
}
|
|
|
|
inline at::Dimname PythonArgs::dimname(int i) {
|
|
TORCH_INTERNAL_ASSERT(args[i] != nullptr);
|
|
return THPDimname_parse(args[i]);
|
|
}
|
|
|
|
inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
|
|
auto tuple = PyTuple_Check(arg);
|
|
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
|
|
std::vector<at::Dimname> res;
|
|
res.reserve(size);
|
|
for (int idx = 0; idx < size; idx++) {
|
|
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
|
|
res.push_back(THPDimname_parse(obj));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
inline c10::optional<std::vector<at::Dimname>> PythonArgs::toDimnameListOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return parseDimnameList(args[i]);
|
|
}
|
|
|
|
inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
|
|
TORCH_INTERNAL_ASSERT(args[i]);
|
|
PyObject* arg = args[i];
|
|
auto size = signature.params[i].size;
|
|
TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
|
|
if (size == 1 && THPUtils_checkDimname(arg)) {
|
|
return { THPDimname_parse(arg) };
|
|
}
|
|
return parseDimnameList(arg);
|
|
}
|
|
|
|
inline at::MemoryFormat PythonArgs::memoryformat(int i) {
|
|
if (!args[i]) return at::MemoryFormat::Contiguous;
|
|
TORCH_CHECK(THPMemoryFormat_Check(args[i]), "memory_format arg must be an instance of the torch.memory_format");
|
|
const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
|
|
return memory_format->memory_format;
|
|
}
|
|
|
|
inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return memoryformat(i);
|
|
}
|
|
|
|
inline at::QScheme PythonArgs::toQScheme(int i) {
|
|
if (!args[i]) return at::kPerTensorAffine;
|
|
TORCH_CHECK(THPQScheme_Check(args[i]), "qscheme arg must be an instance of the torch.qscheme");
|
|
const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
|
|
return qscheme->qscheme;
|
|
}
|
|
|
|
inline std::string PythonArgs::string(int i) {
|
|
if (!args[i]) return "";
|
|
return THPUtils_unpackString(args[i]);
|
|
}
|
|
|
|
inline c10::optional<std::string> PythonArgs::stringOptional(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return THPUtils_unpackString(args[i]);
|
|
}
|
|
|
|
inline int64_t PythonArgs::toInt64(int i) {
|
|
if (!args[i]) return signature.params[i].default_int;
|
|
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
|
|
auto & var = THPVariable_Unpack(args[i]);
|
|
jit::tracer::ArgumentStash::stashValue(
|
|
signature.params[i].name, idx, var, jit::IntType::get());
|
|
}
|
|
return THPUtils_unpackLong(args[i]);
|
|
}
|
|
|
|
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
|
|
if (!args[i]) return default_int;
|
|
return toInt64(i);
|
|
}
|
|
|
|
inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
|
|
if (!args[i])
|
|
return c10::nullopt;
|
|
return toInt64(i);
|
|
}
|
|
|
|
inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
|
|
if (!args[i]) {
|
|
return c10::nullopt;
|
|
}
|
|
return toBool(i);
|
|
}
|
|
|
|
inline c10::optional<double> PythonArgs::toDoubleOptional(int i) {
|
|
if (!args[i]) {
|
|
return c10::nullopt;
|
|
}
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline double PythonArgs::toDouble(int i) {
|
|
if (!args[i]) return signature.params[i].default_double;
|
|
return THPUtils_unpackDouble(args[i]);
|
|
}
|
|
|
|
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
|
|
if (!args[i]) return default_double;
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline c10::complex<double> PythonArgs::toComplex(int i) {
|
|
c10::complex<double> default_value = *const_cast<c10::complex<double> *>(
|
|
reinterpret_cast<const c10::complex<double> *>(signature.params[i].default_complex));
|
|
if (!args[i]) return default_value;
|
|
return THPUtils_unpackComplexDouble(args[i]);
|
|
}
|
|
|
|
inline c10::complex<double> PythonArgs::toComplexWithDefault(int i, c10::complex<double> default_value) {
|
|
if (!args[i]) return default_value;
|
|
return toDouble(i);
|
|
}
|
|
|
|
inline bool PythonArgs::toBool(int i) {
|
|
if (!args[i]) return signature.params[i].default_bool;
|
|
return args[i] == Py_True;
|
|
}
|
|
|
|
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
|
|
if (!args[i]) return default_bool;
|
|
return toBool(i);
|
|
}
|
|
|
|
inline bool PythonArgs::isNone(int i) {
|
|
return args[i] == nullptr;
|
|
}
|
|
|
|
inline c10::optional<at::Generator> PythonArgs::generator(int i) {
|
|
if (!args[i]) return c10::nullopt;
|
|
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
|
|
}
|
|
|
|
inline at::Storage PythonArgs::storage(int i) {
|
|
if (!args[i]) return at::Storage();
|
|
return createStorage(args[i]);
|
|
}
|
|
|
|
inline PyObject* PythonArgs::pyobject(int i) {
|
|
if (!args[i]) return Py_None;
|
|
return args[i];
|
|
}
|
|
|
|
/*
|
|
* Reference: https://github.com/numpy/numpy/blob/f4c497c768e0646df740b647782df463825bfd27/numpy/core/src/common/get_attr_string.h#L42
|
|
*
|
|
* Stripped down version of PyObject_GetAttrString,
|
|
* avoids lookups for None, tuple, and List objects,
|
|
* and doesn't create a PyErr since this code ignores it.
|
|
*
|
|
* This can be much faster then PyObject_GetAttrString where
|
|
* exceptions are not used by caller.
|
|
*
|
|
* 'obj' is the object to search for attribute.
|
|
*
|
|
* 'name' is the attribute to search for.
|
|
*
|
|
* Returns a py::object wrapping the return value. If the attribute lookup failed
|
|
* the value will be NULL.
|
|
*
|
|
*/
|
|
|
|
static py::object PyObject_FastGetAttrString(PyObject *obj, char *name)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
PyObject *res = (PyObject *)NULL;
|
|
|
|
/* Attribute referenced by (char *)name */
|
|
if (tp->tp_getattr != NULL) {
|
|
res = (*tp->tp_getattr)(obj, name);
|
|
if (res == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
/* Attribute referenced by (PyObject *)name */
|
|
else if (tp->tp_getattro != NULL) {
|
|
PyObject *w = THPUtils_internString(name);
|
|
if (w == NULL) {
|
|
return py::object();
|
|
}
|
|
res = (*tp->tp_getattro)(obj, w);
|
|
Py_DECREF(w);
|
|
if (res == NULL) {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
return py::reinterpret_steal<py::object>(res);
|
|
}
|
|
|
|
// Makes sure that we don't check for __torch_function__ on basic Python types
|
|
static bool _is_basic_python_type(PyTypeObject *tp)
|
|
{
|
|
return (
|
|
/* Basic number types */
|
|
tp == &PyBool_Type ||
|
|
|
|
tp == &PyLong_Type ||
|
|
tp == &PyFloat_Type ||
|
|
tp == &PyComplex_Type ||
|
|
|
|
/* Basic sequence types */
|
|
tp == &PyList_Type ||
|
|
tp == &PyTuple_Type ||
|
|
tp == &PyDict_Type ||
|
|
tp == &PySet_Type ||
|
|
tp == &PyFrozenSet_Type ||
|
|
tp == &PyUnicode_Type ||
|
|
tp == &PyBytes_Type ||
|
|
|
|
/* other builtins */
|
|
tp == &PySlice_Type ||
|
|
tp == Py_TYPE(Py_None) ||
|
|
tp == Py_TYPE(Py_Ellipsis) ||
|
|
tp == Py_TYPE(Py_NotImplemented) ||
|
|
|
|
PyModule_Check(tp) ||
|
|
/* sentinel to swallow trailing || */
|
|
false
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Lookup a special method, following the python approach of looking up
|
|
* on the type object, rather than on the instance itself.
|
|
*
|
|
* Assumes that the special method is a torch-specific one, so does not
|
|
* look at builtin types, nor does it look at a base Tensor.
|
|
*
|
|
* If no special method is found, return NULL, otherwise returns a new
|
|
* reference to the function object
|
|
*
|
|
* In future, could be made more like _Py_LookupSpecial
|
|
*/
|
|
|
|
static py::object PyTorch_LookupSpecial(PyObject *obj, char* name)
|
|
{
|
|
if (THPVariable_CheckExact(obj)) {
|
|
return py::object();
|
|
}
|
|
PyTypeObject *tp = Py_TYPE(obj);
|
|
if (_is_basic_python_type(tp)) {
|
|
return py::object();
|
|
}
|
|
return PyObject_FastGetAttrString((PyObject *)tp, name);
|
|
}
|
|
|
|
/*
|
|
* Checks if obj has a __torch_function__ implementation
|
|
*
|
|
* Returns true if an implementation is found and false otherwise
|
|
*
|
|
*/
|
|
static auto check_has_torch_function(PyObject* obj) -> bool
|
|
{
|
|
if (!torch_function_enabled()) {
|
|
return false;
|
|
}
|
|
py::object method = PyTorch_LookupSpecial(obj, "__torch_function__");
|
|
if(method.ptr() != nullptr && method.ptr() != disabled_torch_function_impl()){
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
*
|
|
* Handle __torch_function__ overrides if we know that there are overloaded
|
|
* arguments. All objects stored in r.overloaded_args must have a
|
|
* __torch_function__ implementation and the arguments must be ordered in order
|
|
* of precedence. Precedence goes from left to right in the order of the
|
|
* signature of the function the overloaded arguments were passed to, except
|
|
* subclasses are always considered before superclasses.
|
|
*
|
|
* If the result of calling __torch_function__ is NotImplemented, the
|
|
* next implementation in the precedence order is called. If all
|
|
* arguments return NotImplemented from their __torch_function__
|
|
* implementation, a TypeError is raised in Python.
|
|
*
|
|
* Assumes overloaded_args has at least one entry. All entries must have
|
|
* a __torch_function__ attribute that resolves to a callable that
|
|
* accepts a torch API function, a tuple of arguments, and a dict of
|
|
* keyword arguments for the torch API function.
|
|
*
|
|
* It is sufficient to call PythonArgs::has_torch_function before
|
|
* calling this function to verify that there are valid arguments
|
|
* present. If that is not done then special care must be taken to
|
|
* ensure there are arguments that are overloaded with
|
|
* __torch_function__.
|
|
*
|
|
* See torch._overrides.handle_torch_function for the equivalent
|
|
* code in the pure-python implementation.
|
|
*
|
|
* 'r' is a parsed PythonArgs instance, returned from
|
|
* PythonArgParser::parse.
|
|
*
|
|
* 'args' is a reference to the python tuple of arguments to the torch
|
|
* API function.
|
|
*
|
|
* 'kwargs' is a reference to the python dict of keyword arguments to
|
|
* the torch API function.
|
|
*
|
|
* 'torch_api' is a reference to a python torch API namespace.
|
|
*
|
|
* 'torch_api_function' is the reference to the original torch method, usually,
|
|
* we can use torch_api and func_name to get torch_api_function. In some cases,
|
|
* e.g., torch custom op, we create the function in C++, if we still use
|
|
* torch_api and func_name to fetch original api, a cyclic call will happen.
|
|
*
|
|
* 'overloaded_args' is the args which have overloaded __torch_function__.
|
|
*
|
|
* 'func_name' is the named of the original torch method.
|
|
*
|
|
* TODO: we could use different names for the following 'handle_torch_function'
|
|
* instead of overloading.
|
|
*
|
|
*/
|
|
// Used for Tensor methods with arguments.
|
|
auto handle_torch_function(PythonArgs &r, PyObject* self, PyObject* args, PyObject* kwargs, PyObject* torch_api, const char* module_name) -> PyObject*;
|
|
|
|
// Used for functions which needs to parse python args.
|
|
auto handle_torch_function(PythonArgs &r, PyObject* args, PyObject* kwargs, PyObject* torch_api, const char* module_name) -> PyObject*;
|
|
|
|
// Used for functions that accept no keyword arguments and have no argument parsing
|
|
auto handle_torch_function(PyObject* self, const std::string& func_name, PyObject* args=nullptr, PyObject* torch_api=THPVariableClass, const std::string& module_name="torch.Tensor") -> PyObject*;
|
|
|
|
// Used for functions created in C++, e.g., C++ custom op, which doesn't use PythonArgParser to get overloaded_args.
|
|
auto handle_torch_function_no_python_arg_parser(const std::vector<py::handle> &overloaded_args, PyObject* args, PyObject* kwargs, const char* func_name, PyObject* torch_api_function, const char* module_name) -> PyObject*;
|
|
|
|
// Used for getters of Tensor properties
|
|
auto handle_torch_function_getter(THPVariable* self, const std::string& property_name) -> PyObject*;
|
|
|
|
// Used for setters of Tensor properties.
|
|
auto handle_torch_function_setter(THPVariable* self, const std::string& property_name, PyObject* value) -> int;
|
|
|
|
/*
|
|
* Check if the input obj is Tensor type, including its subclass, or overloaded
|
|
* type. If the type defines __torch_function__, it also returns true.
|
|
* Otherwise returns flase. If the class is not torch.Tensor, and it defines
|
|
* __torch_function__, we append obj to overloaded_args.
|
|
*
|
|
* 'obj': the input argument to be checked
|
|
* 'overloaded_args': the vector to append the overloaded args.
|
|
*/
|
|
bool is_tensor_and_append_overloaded(PyObject* obj, std::vector<py::handle>* overloaded_args);
|
|
|
|
/*
|
|
* Check if the input obj is Tensor List or Tensor Tuple type. First check
|
|
* whether obj is Tuple or List type, if true, iterate over each element and
|
|
* check whether it is Tensor type, including its subclass or overloaded type.
|
|
* At the same time, the overloaded arg is appended to the overloaded_args.
|
|
*
|
|
* 'obj': the input argument to be checked
|
|
* 'overloaded_args': the vector to append the overloaded args.
|
|
* 'argnum': the number of total arguments of the function being checked.
|
|
* 'throw_error': whether throw error if any element in the list or tuple is
|
|
* not tensor type or overloaded.
|
|
*/
|
|
bool is_tensor_list_and_append_overloaded(PyObject* obj, std::vector<py::handle>* overloaded_args, int argnum, bool throw_error);
|
|
|
|
} // namespace torch
|