mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Some notable changes: 1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2. 2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range. Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591 Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
1647 lines
62 KiB
Python
1647 lines
62 KiB
Python
# Owner(s): ["module: ProxyTensor"]
|
|
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, xfail_inherited_tests
|
|
import torch
|
|
import unittest
|
|
import warnings
|
|
import operator
|
|
from collections.abc import Iterable
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_methods_invocations import op_db, skip, xfail, skipOps
|
|
from torch._subclasses.fake_tensor import DynamicOutputShapeException, DataDependentOutputException, FakeTensorMode
|
|
from torch._decomp import decomposition_table
|
|
from torch._export.constraints import constrain_as_size, constrain_as_value
|
|
from torch.fx.experimental.symbolic_shapes import (
|
|
sym_float, eval_guards, bind_symbols, fx_placeholder_vals, fx_placeholder_targets,
|
|
guard_int, GuardOnDataDependentSymNode
|
|
)
|
|
from torch.testing._internal.custom_op_db import custom_op_db
|
|
from torch.testing._internal.control_flow_opinfo_db import control_flow_opinfo_db
|
|
from torch.testing._internal.common_device_type import ops
|
|
import torch.testing._internal.optests as optests
|
|
from torch._C import _disabled_torch_function_impl
|
|
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
|
|
from torch.utils._pytree import tree_map
|
|
from torch import nn
|
|
import re
|
|
|
|
import functools
|
|
import itertools
|
|
|
|
aten = torch.ops.aten
|
|
|
|
HAS_CUDA = torch.cuda.is_available()
|
|
|
|
|
|
def strip_end(s, suffix):
|
|
if suffix and s.endswith(suffix):
|
|
return s[:-len(suffix)]
|
|
else:
|
|
return s
|
|
|
|
|
|
def show_guards(gm):
|
|
names = [strip_end(n, "_1") for n in fx_placeholder_targets(gm)]
|
|
return "\n".join(
|
|
gm.shape_env.produce_guards(fx_placeholder_vals(gm), names, _simplified=True, constraint_inputs=None)
|
|
)
|
|
|
|
|
|
def process_failures():
|
|
"""
|
|
Takes file containing failures like
|
|
|
|
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
|
|
|
|
and processes them into a list of opinfo xfails
|
|
"""
|
|
f = open('pytest_failures')
|
|
failures = f.readlines()
|
|
failures = [i.strip() for i in failures]
|
|
|
|
def process_failure_string(s, matcher):
|
|
out = re.search(matcher, s)
|
|
return out.groups()
|
|
|
|
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
|
|
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
|
|
|
|
def create_normalized_name(op):
|
|
if op.variant_test_name == '':
|
|
s = op.name
|
|
else:
|
|
s = f"{op.name}.{op.variant_test_name}"
|
|
return s.replace('.', '_')
|
|
|
|
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
|
|
|
|
print("symbolic_tensor_failures = {")
|
|
for failure, reason in failures:
|
|
print(f" xfail{remap_opinfo[failure]}, # {reason}")
|
|
print("}")
|
|
|
|
|
|
USE_TORCHVISION = False
|
|
try:
|
|
import torchvision
|
|
USE_TORCHVISION = True
|
|
except ImportError:
|
|
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
|
|
"to install it with commands from pytorch.org, post-fixed with "
|
|
"`--no-deps` to avoid overwriting the pytorch installation",
|
|
UserWarning)
|
|
|
|
|
|
def _create_new_input(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return x
|
|
if x.dtype != torch.float:
|
|
return x + 1
|
|
if x.is_leaf:
|
|
return torch.rand_like(x, requires_grad=x.requires_grad)
|
|
else:
|
|
return torch.rand_like(x)
|
|
|
|
"""
|
|
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
|
|
"""
|
|
class UnwrapTensor(torch.Tensor):
|
|
@staticmethod
|
|
def __new__(cls, tensor: torch.Tensor):
|
|
r = torch.Tensor._make_wrapper_subclass(
|
|
cls,
|
|
tensor.size(),
|
|
dtype=tensor.dtype,
|
|
device=tensor.device,
|
|
layout=tensor.layout,
|
|
requires_grad=tensor.requires_grad,
|
|
)
|
|
r._tensor = tensor
|
|
return r
|
|
|
|
def __repr__(self):
|
|
# TODO: consider all_gather the local tensors for better debugging
|
|
return f"UnwrapTensor({self._tensor})"
|
|
|
|
__torch_function__ = _disabled_torch_function_impl
|
|
|
|
@classmethod
|
|
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
|
|
def unwrap(e):
|
|
ret = e
|
|
if isinstance(e, UnwrapTensor):
|
|
ret = e._tensor.cos()
|
|
|
|
return ret
|
|
|
|
args = tree_map(unwrap, args)
|
|
kwargs = tree_map(unwrap, kwargs)
|
|
return func(*args, **kwargs)
|
|
|
|
class TestGenericProxyTensor(TestCase):
|
|
# WARNING: if any of your inputs are index tensors, DO NOT use this
|
|
# function
|
|
def _test(self, f, inps):
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
|
|
new_inps = tree_map(_create_new_input, inps)
|
|
r1 = fx_f(*new_inps)
|
|
r2 = f(*new_inps)
|
|
self.assertEqual(r1, r2)
|
|
|
|
def test_pre_dispatch_mode_stack(self):
|
|
def f(a):
|
|
b = torch.ones(4, 4)
|
|
return torch.matmul(a, b)
|
|
# We expect to see matmul in the trace - it should NOT be decomposed into mm.
|
|
# Also, torch.ones() doesn't show up in the trace.
|
|
# This is annoying but expected: ones() never dispatches to the Autograd dispatch key,
|
|
# so our mode never sees it - it goes directly to the BackendSelect key.
|
|
inp = torch.ones(4, 4)
|
|
# Test that make_fx(pre_dispatch=True) clears caches properly.
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
with enable_python_dispatcher():
|
|
out1 = f(inp)
|
|
fx_g = make_fx(f, pre_dispatch=True)(inp)
|
|
self.assertExpectedInline(fx_g.code.strip(), """\
|
|
def forward(self, a_1):
|
|
ones = torch.ops.aten.ones.default([4, 4], device = device(type='cpu'), pin_memory = False)
|
|
matmul = torch.ops.aten.matmul.default(a_1, ones); a_1 = ones = None
|
|
return matmul""")
|
|
|
|
def test_pre_dispatch_linear(self):
|
|
def f(a, b, c):
|
|
return torch.nn.functional.linear(a, b, c)
|
|
a = torch.ones(4, 4)
|
|
b = torch.ones(4, 4)
|
|
c = torch.ones(4)
|
|
fx_g = make_fx(f, pre_dispatch=True)(a, b, c)
|
|
out1 = f(a, b, c)
|
|
out2 = fx_g(a, b, c)
|
|
self.assertEqual(out1, out2)
|
|
|
|
def test_pre_dispatch_no_grad(self):
|
|
def f(a):
|
|
b = a.sin()
|
|
torch.set_grad_enabled(False)
|
|
c = b.cos()
|
|
torch.set_grad_enabled(True)
|
|
return b + c.sin()
|
|
a1 = torch.randn(4, requires_grad=True)
|
|
a2 = a1.clone().detach().requires_grad_(True)
|
|
a_tmp = a1.clone().detach().requires_grad_(True)
|
|
fx_g = make_fx(f, pre_dispatch=True)(a_tmp)
|
|
out1 = f(a1)
|
|
out2 = fx_g(a2)
|
|
self.assertEqual(out1, out2)
|
|
out1.sum().backward()
|
|
out2.sum().backward()
|
|
self.assertEqual(a1.grad, a2.grad)
|
|
|
|
def test_make_fx_simple(self):
|
|
def f(x):
|
|
return torch.sin(x)
|
|
self._test(f, (torch.randn(3),))
|
|
|
|
def test_scalar_device(self, device='cpu'):
|
|
def f(a, b):
|
|
return a + b
|
|
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
|
|
|
|
def test_isolated_graphmodule(self):
|
|
def is_any_sum(gm):
|
|
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
|
|
|
|
def is_any_digamma(gm):
|
|
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
|
|
|
|
def is_any_sigmoid(gm):
|
|
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
|
|
|
|
def inner(x):
|
|
return torch.sum(x)
|
|
|
|
def f(x):
|
|
gm = get_isolated_graphmodule(inner, (x,), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return x + torch.randn(x.shape)
|
|
|
|
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
|
|
# by the outer make_fx call
|
|
traced = make_fx(f)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
|
|
# When factory functions are used, they should not be traced
|
|
# by the outer make_fx call
|
|
def inner_with_factory():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((10, 10), val).sum()
|
|
|
|
def f1(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2(x):
|
|
gm = get_isolated_graphmodule(f1, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify nested make_fx calls don't make factory functions to be leaked
|
|
# into the outer graph. Verify that `make_fx`` itself does not leak its execution.
|
|
def f2(x):
|
|
gm = make_fx(f1)(x)
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify that the `forward`` function of a graph module produced as a
|
|
# side effect of an interior `make_fx` is still traced
|
|
def f3(x):
|
|
gm = make_fx(f1)(x)
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
# `gm.forward`` is still traced
|
|
return torch.digamma(gm(x))
|
|
|
|
traced = make_fx(f3)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertTrue(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with non-ProxyTensor modes
|
|
from torch.testing._internal.logging_tensor import LoggingTensorMode
|
|
|
|
def f1_logging(x):
|
|
with LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging(x):
|
|
with LoggingTensorMode(), LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(f1_logging, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with another tensor subclass
|
|
# This case currently doesn't work and should raise an error
|
|
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
|
|
from torch.testing._internal.logging_tensor import LoggingTensor
|
|
|
|
def f1_logging_tensor(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging_tensor(x):
|
|
x = LoggingTensor(x)
|
|
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging_tensor)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# See https://github.com/pytorch/pytorch/issues/97541
|
|
def test_empty_like_doesnt_burn_in_defaults(self):
|
|
def f(x):
|
|
return torch.empty_like(x)
|
|
out = make_fx(f)(torch.randn(3))
|
|
self.assertExpectedInline(out.code.strip(), """\
|
|
def forward(self, x_1):
|
|
empty_like = torch.ops.aten.empty_like.default(x_1, pin_memory = False); x_1 = None
|
|
return empty_like""")
|
|
|
|
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
|
|
def f(x):
|
|
y = x.new_zeros(x.size())
|
|
y.copy_(x)
|
|
return y
|
|
|
|
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
|
|
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
|
|
|
|
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
|
|
|
|
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
|
|
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
|
|
# returns a ProxyTensor.
|
|
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
|
|
self.assertExpectedInline(out.code, """\
|
|
|
|
|
|
|
|
def forward(self, x_1):
|
|
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
|
|
copy_ = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
|
|
return copy_
|
|
""")
|
|
|
|
def test_make_fx_reentrant_dispatch(self):
|
|
def f(x):
|
|
return torch.ops.aten.norm.Scalar(x, 2.0)
|
|
|
|
def norm_decomp(x, p=2.0):
|
|
if p != 2.0:
|
|
raise RuntimeError("can't handle with p != 2")
|
|
return torch.sqrt(torch.sum(torch.square(x)))
|
|
|
|
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
|
|
|
|
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
|
|
|
|
for n in traced.graph.nodes:
|
|
self.assertTrue("square" not in str(n.target))
|
|
self.assertTrue("norm" not in str(n.target))
|
|
|
|
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
|
def test_resnet18_backward_trace(self):
|
|
mod = torchvision.models.resnet18()
|
|
|
|
# An old version of this test called the module directly. This works
|
|
# for tracing_mode == "real", but for fake tensors, we also have to
|
|
# ensure that the parameters and buffers get wrapped in fake tensors
|
|
# because free fake tensors are not supported. Fortunately functional_call
|
|
# does precisely this for us.
|
|
def f(x, params, buffers):
|
|
for p in params.values():
|
|
p.grad = None
|
|
loss = torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
|
|
# I could have done this with the functional API, but there is
|
|
# plenty of exercising this; I want to show mutating API still
|
|
# works
|
|
loss.backward()
|
|
return [p.grad for p in params.values()]
|
|
|
|
inp = torch.randn(3, 3, 250, 250)
|
|
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
|
|
|
|
def test_varargs(self):
|
|
def f(*args):
|
|
return sum(args)
|
|
|
|
self._test(f, [torch.randn(2), torch.randn(2)])
|
|
|
|
def test_proxy_tensor(self):
|
|
def f_grad(x):
|
|
val = x.cos().cos().sum()
|
|
return torch.autograd.grad(val, x)
|
|
|
|
def f_backward(x):
|
|
val = x.cos().cos().sum()
|
|
val.backward()
|
|
return x.grad
|
|
|
|
for f in [f_grad, f_backward]:
|
|
self._test(f, [torch.randn(3, requires_grad=True)])
|
|
|
|
def test_pickle_issue89626(self):
|
|
import pickle
|
|
x = torch.randn(2)
|
|
make_fx(lambda x: x * 2, tracing_mode=self.tracing_mode)(x)
|
|
pickle.dumps(x)
|
|
|
|
def test_inplace_metadata(self):
|
|
def f(x):
|
|
x = x.clone()
|
|
x.unsqueeze_(-1)
|
|
assert x.shape[-1] == 1
|
|
return x
|
|
|
|
self._test(f, [torch.randn(5)])
|
|
|
|
def test_mode_tracing_factory_function(self):
|
|
def f(x):
|
|
return x + torch.randn(x.shape)
|
|
|
|
# default behavior should trace factory functions
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
|
|
self.assertTrue(
|
|
any(
|
|
node.target == aten.randn.default
|
|
for node in traced.graph.nodes
|
|
)
|
|
)
|
|
|
|
def test_val_metadata_mutation(self):
|
|
def f(x):
|
|
y = x.clone()
|
|
y.unsqueeze_(0)
|
|
return y
|
|
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3, requires_grad=True))
|
|
self.assertEqual([
|
|
tuple(node.meta['val'].shape)
|
|
for node in traced.graph.nodes
|
|
if 'val' in node.meta
|
|
], [(3,), (3,), (1, 3)])
|
|
|
|
def test_make_fx_overloads(self):
|
|
def f(x):
|
|
return x.cos() + torch.randn(x.shape)
|
|
|
|
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
|
|
|
|
self.assertTrue(all(isinstance(node.target, torch._ops.OpOverload)
|
|
for node in traced.graph.nodes if node.op == 'call_function'))
|
|
|
|
def test_tensor_constants(self):
|
|
def f():
|
|
val = torch.tensor(float('inf'))
|
|
return torch.full((100, 100), val)
|
|
|
|
self._test(f, [])
|
|
|
|
def test_allclose(self):
|
|
def f(a, b):
|
|
return torch.allclose(a, b)
|
|
|
|
def test_f():
|
|
make_fx(f, tracing_mode=self.tracing_mode)(
|
|
torch.zeros(3), torch.zeros(3)
|
|
)
|
|
|
|
if self.tracing_mode != "real":
|
|
self.assertRaises(DataDependentOutputException, test_f)
|
|
else:
|
|
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
|
|
|
|
def test_constant_proxy_tensor_mut(self):
|
|
def f():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((100, 100), val)
|
|
|
|
g = make_fx(f, tracing_mode=self.tracing_mode)()
|
|
self.assertEqual(g(), f())
|
|
# In case we mutated shared state in the g graph!
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_unbind(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
r, = torch.unbind(val, 0)
|
|
return r.item()
|
|
|
|
g = make_fx(f, tracing_mode=self.tracing_mode)()
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_blowup(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
blowup = val.repeat(1000)
|
|
return bool(blowup.sum().item() == 2)
|
|
|
|
def test_f():
|
|
make_fx(f, tracing_mode=self.tracing_mode)()
|
|
|
|
if self.tracing_mode == "fake":
|
|
self.assertRaises(DataDependentOutputException, test_f)
|
|
else:
|
|
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
|
|
|
|
def test_constant_random(self):
|
|
def f():
|
|
val = torch.tensor([2.0])
|
|
val.normal_()
|
|
return bool(val.item() == 2.1)
|
|
|
|
def test_f():
|
|
make_fx(f, tracing_mode=self.tracing_mode)()
|
|
|
|
if self.tracing_mode == "fake":
|
|
self.assertRaises(DataDependentOutputException, test_f)
|
|
else:
|
|
self.assertRaisesRegex(RuntimeError, "data-dependent", test_f)
|
|
|
|
def test_decomposition_interpreter(self):
|
|
def fn(x):
|
|
return torch.nn.functional.silu(x)
|
|
|
|
x = torch.rand((4, 4))
|
|
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
|
|
|
|
found_silu = False
|
|
for n in fx_module.graph.nodes:
|
|
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
|
|
found_silu = True
|
|
|
|
self.assertTrue(found_silu)
|
|
|
|
new_graph = torch.fx.Graph()
|
|
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
|
|
DecompositionInterpreter(
|
|
fx_module,
|
|
new_graph=new_graph,
|
|
decomposition_table=silu_decomp_table,
|
|
).run(x)
|
|
|
|
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
|
|
|
|
for n in decomposed_module.graph.nodes:
|
|
self.assertTrue(n.target != torch.ops.aten.silu)
|
|
self.assertTrue(n.target != torch.ops.aten.silu.default)
|
|
|
|
self.assertEqual(fx_module(x), decomposed_module(x))
|
|
|
|
def test_make_fx_model_fwd_bwd(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(x, params):
|
|
out = torch.func.functional_call(model, params, x).sum()
|
|
out.backward()
|
|
return list(params.values())
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
|
|
)
|
|
|
|
def test_make_fx_model_double_param(self):
|
|
class Emformer(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
input_dim: int = 256,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.layer_norm = torch.nn.LayerNorm(input_dim)
|
|
|
|
def forward(mod_self, x): # noqa: B902
|
|
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
|
|
y = mod_self.layer_norm(x)
|
|
self.assertTrue(isinstance(mod_self.layer_norm.weight, torch.Tensor))
|
|
z = mod_self.layer_norm(y)
|
|
return z
|
|
|
|
|
|
gm = make_fx(Emformer())(torch.randn(16, 1, 256))
|
|
ops = {n.target for n in gm.graph.nodes if n.op == 'call_function'}
|
|
self.assertEqual(len(ops), 2)
|
|
|
|
|
|
def test_make_fx_model_fwd_bwd_wgtupdate(self):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(args, params, buffers):
|
|
for p in params.values():
|
|
p.grad = None
|
|
if not isinstance(args, Iterable):
|
|
args = [args]
|
|
params_and_buffers = {**params, **buffers}
|
|
out = torch.func.functional_call(model, params_and_buffers, args)
|
|
out.sum().backward()
|
|
return [p - 1e-4 * p.grad for p in params.values()]
|
|
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
buffers = dict(model.named_buffers())
|
|
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
|
|
def test_trace_subclasses(self):
|
|
def f1(x):
|
|
x = UnwrapTensor(x)
|
|
y = x * 2
|
|
return y
|
|
|
|
def f2(x):
|
|
wrapped = UnwrapTensor(x)
|
|
y = x * wrapped
|
|
return y
|
|
|
|
inp = [torch.randn(5)]
|
|
self._test(f1, inp)
|
|
self._test(f2, inp)
|
|
|
|
def test_partial_decomp(self):
|
|
def f(a, b, c):
|
|
x = torch.addmm(a, b, c)
|
|
y = torch.addmm(a, b, c, beta=2, alpha=1)
|
|
return x + y
|
|
inps = [torch.randn(5, 5), torch.randn(5, 5), torch.randn(5, 5)]
|
|
fx_g = make_fx(f)(*inps)
|
|
|
|
def addmm(a, b, c, beta=1, alpha=1):
|
|
if beta == 1 and alpha == 1:
|
|
return NotImplemented
|
|
return beta * a + alpha * (b @ c)
|
|
|
|
decomposed_fx = make_fx(f, decomposition_table={aten.addmm.default: addmm})(*inps)
|
|
|
|
self.assertEqual(fx_g(*inps), decomposed_fx(*inps))
|
|
self.assertEqual(len([n for n in fx_g.graph.nodes if n.target == aten.addmm.default]), 2)
|
|
self.assertEqual(len([n for n in decomposed_fx.graph.nodes if n.target == aten.addmm.default]), 1)
|
|
|
|
def test_decomp_of_capture(self):
|
|
val = torch.randn(5)
|
|
|
|
def f(x):
|
|
return x.t() + val.t()
|
|
|
|
def nop(x):
|
|
return x.cos()
|
|
|
|
traced = make_fx(f, decomposition_table={torch.ops.aten.t.default: nop})(torch.randn(5))
|
|
self.assertEqual(len([n for n in traced.graph.nodes if n.target == torch.ops.aten.t.default]), 0)
|
|
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_amp_cache(self):
|
|
layer = torch.nn.Conv2d(3, 3, 3).cuda()
|
|
|
|
def f(x, w):
|
|
return torch.nn.functional.conv2d(x, w, stride=layer.stride)
|
|
|
|
inp = torch.randn(4, 3, 10, 10, device='cuda')
|
|
with torch.autocast('cuda'):
|
|
out_graph = make_fx(f)(inp, layer.weight).graph
|
|
out_graph2 = make_fx(f)(inp, layer.weight).graph
|
|
|
|
self.assertEqual(len(out_graph.nodes), len(out_graph2.nodes))
|
|
for a, b in zip(out_graph.nodes, out_graph2.nodes):
|
|
self.assertEqual(a.op, b.op)
|
|
|
|
def test_strides(self):
|
|
def f(x):
|
|
self.assertTrue(x.is_contiguous())
|
|
self.assertFalse(x.is_contiguous(memory_format=torch.channels_last))
|
|
x = x.permute(0, 3, 1, 2)
|
|
self.assertFalse(x.is_contiguous())
|
|
self.assertTrue(x.is_contiguous(memory_format=torch.channels_last))
|
|
return x
|
|
make_fx(f)(torch.randn(2, 3, 4, 5))
|
|
|
|
def f(x):
|
|
self.assertTrue(x.is_contiguous())
|
|
y = x[:, 1]
|
|
self.assertFalse(y.is_contiguous())
|
|
y = x[:, ::2]
|
|
self.assertFalse(y.is_contiguous())
|
|
return x.cos()
|
|
|
|
make_fx(f)(torch.randn(2, 3, 4, 5))
|
|
|
|
def test_pr_86917(self):
|
|
# Tests the issue brought up here https://github.com/pytorch/pytorch/pull/86917#issuecomment-1283155344
|
|
def f(a, b):
|
|
return torch.ops.aten.nll_loss_forward(a, b, None, 1, 10)
|
|
|
|
self._test(f, [torch.randn(1, 10), torch.zeros(1, dtype=torch.long)])
|
|
|
|
class TestGenericProxyTensorReal(TestGenericProxyTensor):
|
|
tracing_mode = "real"
|
|
|
|
|
|
class TestGenericProxyTensorFake(TestGenericProxyTensor):
|
|
tracing_mode = "fake"
|
|
|
|
|
|
@xfail_inherited_tests([
|
|
"test_make_fx_overloads",
|
|
])
|
|
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
|
|
tracing_mode = "symbolic"
|
|
|
|
|
|
del TestGenericProxyTensor
|
|
|
|
|
|
class TestRealProxyTensor(TestCase):
|
|
pass
|
|
|
|
class TestFakeProxyTensor(TestCase):
|
|
def test_issue82547(self):
|
|
x = nn.Parameter(torch.randn(3, 3))
|
|
|
|
def f():
|
|
return torch.ops.aten.t.default(x)
|
|
self.assertRaisesRegex(Exception, "Please convert all Tensors", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
class A(torch.Tensor):
|
|
pass
|
|
|
|
x = A(torch.randn(3, 3))
|
|
self.assertRaisesRegex(TypeError, "Multiple dispatch failed", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
def test_use_fake_and_tensor(self):
|
|
def f(x, y):
|
|
z = torch.tensor([2.0, 3.0])
|
|
return x + y + z
|
|
|
|
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
|
|
x, y = torch.randn(2), torch.randn(2)
|
|
self.assertEqual(g(x, y), f(x, y))
|
|
|
|
def test_free_fake(self):
|
|
def f(x):
|
|
return torch.add(x, y)
|
|
|
|
with FakeTensorMode() as fake_mode:
|
|
y = torch.randn(2)
|
|
make_fx(f, tracing_mode="real")(torch.randn(2))
|
|
|
|
def test_fused_adam(self):
|
|
# See https://github.com/pytorch/pytorch/issues/99356
|
|
params = [torch.randn(10, 10) for _ in range(10)]
|
|
grads = [torch.randn(10, 10) for _ in range(10)]
|
|
exp_avgs = [torch.randn(10, 10) for _ in range(10)]
|
|
exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
|
|
max_exp_avg_sqs = [torch.randn(10, 10) for _ in range(10)]
|
|
state_steps = [torch.tensor(0) for _ in range(10)]
|
|
|
|
def fused_adam(params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps):
|
|
(new_params, _, _, _, _) = aten._fused_adam.default(
|
|
params,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
lr=0.1,
|
|
beta1=0.9,
|
|
beta2=0.999,
|
|
weight_decay=0.01,
|
|
eps=1e-8,
|
|
amsgrad=False,
|
|
maximize=False,
|
|
)
|
|
|
|
for p, new_p in zip(params, new_params):
|
|
p.copy_(new_p)
|
|
|
|
return params
|
|
|
|
gm = make_fx(fused_adam, tracing_mode='fake')(
|
|
params,
|
|
grads,
|
|
exp_avgs,
|
|
exp_avg_sqs,
|
|
max_exp_avg_sqs,
|
|
state_steps,
|
|
)
|
|
ensure_ops_have_val = [aten._fused_adam.default, operator.getitem]
|
|
for n in gm.graph.nodes:
|
|
if n.op == "call_function" and n.target in ensure_ops_have_val:
|
|
self.assertIn('val', n.meta)
|
|
|
|
def test_alias(self):
|
|
def f(x):
|
|
return torch.ops.aten.alias(x)
|
|
|
|
r = str(make_fx(f, tracing_mode="fake")(torch.randn(2)).code).strip()
|
|
# NB: this should not have a detach call
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1):
|
|
alias = torch.ops.aten.alias.default(x_1); x_1 = None
|
|
return alias""")
|
|
|
|
def test_meta(self):
|
|
def f(x):
|
|
a = x.cos()
|
|
b = torch.var_mean(a, dim=0)
|
|
c = b * 2
|
|
return c
|
|
|
|
out = make_fx(f, tracing_mode="fake")(torch.randn(5, 5))
|
|
for n in out.graph.nodes:
|
|
if n.op == 'output':
|
|
continue
|
|
self.assertTrue('val' in n.meta)
|
|
|
|
def _get_node(fx_g, cond):
|
|
for n in fx_g.graph.nodes:
|
|
if cond(n):
|
|
return n
|
|
raise AssertionError
|
|
|
|
def _get_free_symbols(shape_env):
|
|
vars = tuple(shape_env.var_to_val.keys())
|
|
return len([var for var in vars if var not in shape_env.replacements])
|
|
|
|
def _trace(f, *args):
|
|
inps = [torch.randn(arg) for arg in args]
|
|
return make_fx(f, tracing_mode="symbolic")(*inps)
|
|
|
|
# TODO: Need to test the guards themselves specifically as well
|
|
class TestSymbolicTracing(TestCase):
|
|
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
|
|
"""
|
|
Tests fn traced with trace_inputs against test_inputs
|
|
Also returns shape env
|
|
"""
|
|
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
|
|
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
|
|
for input in test_inputs:
|
|
input = [torch.randn(shape) for shape in input]
|
|
rx, ry = traced_f(*input), fn(*input)
|
|
if assert_eq:
|
|
self.assertEqual(rx, ry)
|
|
return traced_f
|
|
|
|
|
|
def test_debug_interpreter(self):
|
|
import torch.library
|
|
from torch.library import Library
|
|
|
|
foo = Library("foo", "DEF")
|
|
foo.define("foo(Tensor self) -> Tensor")
|
|
|
|
# Operator where meta and cpu disagree on strides
|
|
@torch.library.impl(foo, "foo", "CPU")
|
|
def foo_cpu(x):
|
|
return x.clone().T
|
|
|
|
@torch.library.impl(foo, "foo", "Meta")
|
|
def foo_meta(x):
|
|
return x.clone()
|
|
|
|
def f(x):
|
|
return torch.ops.foo.foo.default(x)
|
|
|
|
gm = make_fx(f, tracing_mode="symbolic")(torch.randn(2, 2))
|
|
from torch._functorch.compilers import DebugInterpreter
|
|
|
|
interp = DebugInterpreter(gm)
|
|
|
|
# input mismatch is caught (indicates guard problem)
|
|
self.assertRaisesRegex(
|
|
AssertionError, r"3 != 1",
|
|
lambda: interp.run(torch.randn(3, 3).T),
|
|
)
|
|
|
|
# Catch the incorrect meta
|
|
self.assertRaisesRegex(
|
|
AssertionError, r"\(3, 1\) != \(1, 3\)",
|
|
lambda: interp.run(torch.randn(3, 3))
|
|
)
|
|
|
|
def test_resize_from_zero(self):
|
|
def f(x, y):
|
|
x.resize_(y.size(0))
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(0), torch.empty(2)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, x_1, y_1):
|
|
sym_size = torch.ops.aten.sym_size(y_1, 0); y_1 = None
|
|
resize_ = torch.ops.aten.resize_.default(x_1, [sym_size]); x_1 = sym_size = None
|
|
return None""")
|
|
|
|
|
|
def test_unary(self):
|
|
def f(x):
|
|
assert x.shape[0] < 20
|
|
return x.cos()
|
|
test_inputs = []
|
|
test_inputs.append([(2, 5)])
|
|
test_inputs.append([(6, 8)])
|
|
gm = self._test_dynamic(f, [(3, 4)], test_inputs)
|
|
self.assertTrue(eval_guards(gm, torch.randn(4, 5)))
|
|
self.assertEqual(repr(bind_symbols(gm, torch.randn(4, 5))), "{s0: 4, s1: 5}")
|
|
self.assertFalse(eval_guards(gm, torch.randn(25, 5)))
|
|
self.assertExpectedInline(show_guards(gm), """L['x'].size()[0] < 20""")
|
|
|
|
def test_repeat_interleave(self):
|
|
def f(src_tokens, beam_size_src):
|
|
return src_tokens.repeat_interleave(beam_size_src.size(0), 0)
|
|
|
|
prompt_size = 64
|
|
vocab_size = 64
|
|
batch_size = 4
|
|
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
|
|
gm = make_fx(f, tracing_mode="symbolic")(src_tokens, torch.randn(5))
|
|
self.assertEqual(len(gm.shape_env.guards), 0)
|
|
|
|
def test_adv_index_batch(self):
|
|
def f(src_tokens):
|
|
bsz, src_len = src_tokens.size()[:2]
|
|
start_step = src_tokens.shape[1]
|
|
beam_size = 1
|
|
generate_size = 64
|
|
max_len = src_len + generate_size
|
|
tokens = torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0)
|
|
tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0)
|
|
return tokens
|
|
|
|
prompt_size = 64
|
|
vocab_size = 64
|
|
batch_size = 4
|
|
src_tokens = torch.randint(1, vocab_size, (batch_size, prompt_size))
|
|
gm = make_fx(f, tracing_mode="symbolic")(src_tokens)
|
|
self.assertEqual(len(gm.shape_env.guards), 0)
|
|
|
|
@unittest.skipIf(not HAS_CUDA, 'CUDA-only test')
|
|
def test_cpu_scalar_cuda(self):
|
|
# Extracted from wave2vec2
|
|
def f(a, b):
|
|
return (a * b) @ b
|
|
|
|
r = str(
|
|
make_fx(f, tracing_mode="symbolic")(
|
|
torch.tensor(1.0), torch.randn(2, 2, device='cuda')
|
|
).code
|
|
).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1, b_1):
|
|
mul = torch.ops.aten.mul.Tensor(a_1, b_1); a_1 = None
|
|
mm = torch.ops.aten.mm.default(mul, b_1); mul = b_1 = None
|
|
return mm""")
|
|
|
|
def test_binary_broadcast(self):
|
|
def f(a, b):
|
|
c = a * b
|
|
return c
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (3, 1)])
|
|
test_inputs.append([(1, 4), (4, 1)])
|
|
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs).shape_env
|
|
assert len(shape_env.guards) == 0
|
|
|
|
def test_multiply_shape(self):
|
|
def f(a):
|
|
return torch.empty(a.shape[0] * 2)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0); a_1 = None
|
|
mul = sym_size * 2; sym_size = None
|
|
empty = torch.ops.aten.empty.memory_format([mul], device = device(type='cpu'), pin_memory = False); mul = None
|
|
return empty""")
|
|
|
|
def test_item(self):
|
|
def f(a):
|
|
r = a.item()
|
|
return r * a
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.randn(1)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1)
|
|
mul = torch.ops.aten.mul.Tensor(a_1, _local_scalar_dense); a_1 = _local_scalar_dense = None
|
|
return mul""")
|
|
|
|
def test_item_to_constructor(self):
|
|
def f(a):
|
|
r = a.item()
|
|
constrain_as_size(r)
|
|
return torch.empty(r)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.randint(5, (1,))).code).strip()
|
|
self.assertExpectedInline(
|
|
r, """\
|
|
def forward(self, a_1):
|
|
_local_scalar_dense = torch.ops.aten._local_scalar_dense.default(a_1); a_1 = None
|
|
sym_constrain_range_for_size = torch.ops.aten.sym_constrain_range_for_size.default(_local_scalar_dense, min = None, max = None)
|
|
empty = torch.ops.aten.empty.memory_format([_local_scalar_dense], device = device(type='cpu'), pin_memory = False); _local_scalar_dense = None
|
|
return empty""" # noqa: B950
|
|
)
|
|
|
|
def test_dynamic_pointwise_scalar(self):
|
|
def f(gravity, mask):
|
|
gravity[mask, 0] = gravity[mask, 0] * -1
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn((12, 4)),
|
|
torch.randint(0, 2, (12,), dtype=torch.bool)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, gravity_1, mask_1):
|
|
select = torch.ops.aten.select.int(gravity_1, 1, 0)
|
|
index = torch.ops.aten.index.Tensor(select, [mask_1]); select = None
|
|
mul = torch.ops.aten.mul.Tensor(index, -1); index = None
|
|
select_1 = torch.ops.aten.select.int(gravity_1, 1, 0); gravity_1 = None
|
|
index_put_ = torch.ops.aten.index_put_.default(select_1, [mask_1], mul); select_1 = mask_1 = mul = None
|
|
return None""")
|
|
|
|
def test_reflect_r_over_x(self):
|
|
def reflect_R_over_x(R):
|
|
reflect = torch.eye(3, device=R.device)
|
|
reflect[0, 0] = -1
|
|
return reflect @ R @ reflect
|
|
|
|
def f(crop_camera, mask):
|
|
crop_camera[mask] = reflect_R_over_x(crop_camera[mask])
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn((12, 3, 3)),
|
|
torch.randint(0, 2, (12,), dtype=torch.bool)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, crop_camera_1, mask_1):
|
|
index = torch.ops.aten.index.Tensor(crop_camera_1, [mask_1])
|
|
eye = torch.ops.aten.eye.default(3, device = device(type='cpu'), pin_memory = False)
|
|
_tensor_constant0 = self._tensor_constant0
|
|
lift_fresh_copy = torch.ops.aten.lift_fresh_copy.default(_tensor_constant0); _tensor_constant0 = None
|
|
select = torch.ops.aten.select.int(eye, 0, 0)
|
|
select_1 = torch.ops.aten.select.int(select, 0, 0); select = None
|
|
copy_ = torch.ops.aten.copy_.default(select_1, lift_fresh_copy); select_1 = lift_fresh_copy = None
|
|
sym_size = torch.ops.aten.sym_size(index, 0)
|
|
expand = torch.ops.aten.expand.default(eye, [sym_size, 3, 3])
|
|
view = torch.ops.aten.view.default(expand, [sym_size, 3, 3]); expand = None
|
|
sym_size_1 = torch.ops.aten.sym_size(crop_camera_1, 1)
|
|
sym_size_2 = torch.ops.aten.sym_size(crop_camera_1, 2)
|
|
expand_1 = torch.ops.aten.expand.default(index, [sym_size, sym_size_1, sym_size_2]); index = None
|
|
view_1 = torch.ops.aten.view.default(expand_1, [sym_size, sym_size_1, sym_size_2]); expand_1 = sym_size_1 = sym_size_2 = None
|
|
bmm = torch.ops.aten.bmm.default(view, view_1); view = view_1 = None
|
|
view_2 = torch.ops.aten.view.default(bmm, [sym_size, 3, 3]); bmm = None
|
|
mul = sym_size * 3
|
|
view_3 = torch.ops.aten.view.default(view_2, [mul, 3]); view_2 = mul = None
|
|
mm = torch.ops.aten.mm.default(view_3, eye); view_3 = eye = None
|
|
view_4 = torch.ops.aten.view.default(mm, [sym_size, 3, 3]); mm = sym_size = None
|
|
index_put_ = torch.ops.aten.index_put_.default(crop_camera_1, [mask_1], view_4); crop_camera_1 = mask_1 = view_4 = None
|
|
return None""")
|
|
|
|
def test_unbacked_slice(self):
|
|
def f(x, m):
|
|
x = x[m]
|
|
return x[slice(None, None, None), slice(None, None, None), slice(None, 2, None)]
|
|
|
|
make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn((12, 3, 3)),
|
|
torch.randint(0, 2, (12,), dtype=torch.bool)
|
|
)
|
|
|
|
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
|
def test_unbacked_batch_resnet(self):
|
|
mod = torchvision.models.resnet18()
|
|
|
|
def f(x, mask, params, buffers):
|
|
for p in itertools.chain([x, mask], params.values(), buffers.values()):
|
|
for s in p.shape:
|
|
guard_int(s)
|
|
x = x[mask]
|
|
constrain_as_value(x.shape[0], min=1)
|
|
for p in params.values():
|
|
p.grad = None
|
|
return torch.func.functional_call(mod, {**params, **buffers}, (x,)).sum()
|
|
|
|
make_fx(f, tracing_mode="symbolic")(
|
|
torch.randn(3, 3, 250, 250),
|
|
torch.randint(0, 2, (3,), dtype=torch.bool),
|
|
dict(mod.named_parameters()),
|
|
dict(mod.named_buffers()),
|
|
)
|
|
|
|
def test_boolean_index(self):
|
|
def f(images, handedness, valid):
|
|
images = images[valid]
|
|
handedness = handedness[valid]
|
|
right_hand_mask = handedness == 1
|
|
images[right_hand_mask] = images[right_hand_mask].flip(-1)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(
|
|
torch.randint(0, 256, (512, 1, 96, 96)),
|
|
torch.randint(0, 1, (512,)),
|
|
torch.randint(0, 2, (512,), dtype=torch.bool)
|
|
).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, images_1, handedness_1, valid_1):
|
|
index = torch.ops.aten.index.Tensor(images_1, [valid_1]); images_1 = None
|
|
index_1 = torch.ops.aten.index.Tensor(handedness_1, [valid_1]); handedness_1 = valid_1 = None
|
|
eq = torch.ops.aten.eq.Scalar(index_1, 1); index_1 = None
|
|
index_2 = torch.ops.aten.index.Tensor(index, [eq])
|
|
flip = torch.ops.aten.flip.default(index_2, [-1]); index_2 = None
|
|
index_put_ = torch.ops.aten.index_put_.default(index, [eq], flip); index = eq = flip = None
|
|
return None""")
|
|
|
|
def test_neg_shape(self):
|
|
def f(a):
|
|
return torch.empty(-a.shape[0] + 10)
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(2)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0); a_1 = None
|
|
neg = -sym_size; sym_size = None
|
|
add = neg + 10; neg = None
|
|
empty = torch.ops.aten.empty.memory_format([add], device = device(type='cpu'), pin_memory = False); add = None
|
|
return empty""")
|
|
|
|
def test_invalidate_nonzero(self):
|
|
ok = False
|
|
|
|
def f(a):
|
|
nonlocal ok
|
|
b = a.clone()
|
|
x = b.nonzero()
|
|
x1 = b.nonzero()
|
|
x2 = b.nonzero()
|
|
assert x1.shape[0] == x2.shape[0]
|
|
ok = True
|
|
b.normal_()
|
|
y = b.nonzero()
|
|
try:
|
|
bool(x1.shape[0] == y.shape[0])
|
|
self.fail("didn't raise exception")
|
|
except GuardOnDataDependentSymNode:
|
|
pass
|
|
|
|
make_fx(f, tracing_mode="symbolic")(torch.randn(4))
|
|
|
|
def test_sqrt_size(self):
|
|
def f(a):
|
|
return a / a.size(-1) ** 0.5
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0)
|
|
pow_1 = sym_size ** 0.5; sym_size = None
|
|
div = torch.ops.aten.div.Tensor(a_1, pow_1); a_1 = pow_1 = None
|
|
return div""")
|
|
|
|
|
|
def test_symint_to_tensor(self):
|
|
def f(a):
|
|
return a / a.shape[0]
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0)
|
|
div = torch.ops.aten.div.Tensor(a_1, sym_size); a_1 = sym_size = None
|
|
return div""")
|
|
|
|
r = str(make_fx(f, tracing_mode="symbolic", decomposition_table=decomposition_table)(torch.empty(4)).code).strip()
|
|
self.assertExpectedInline(r, """\
|
|
def forward(self, a_1):
|
|
sym_size = torch.ops.aten.sym_size(a_1, 0)
|
|
sym_float = torch.sym_float(sym_size); sym_size = None
|
|
div = torch.ops.prims.div.default(a_1, sym_float); a_1 = sym_float = None
|
|
return div""")
|
|
|
|
def test_cat(self):
|
|
def f(a, b):
|
|
val = torch.mul(a, b)
|
|
out = torch.cat([val, val])
|
|
if out.shape[0] * out.shape[1] > 20:
|
|
out = out.cos()
|
|
return out
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (6, 1)])
|
|
test_inputs.append([(1, 4), (3, 1)])
|
|
gm = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
|
|
self.assertTrue(eval_guards(gm, torch.randn(1, 10), torch.randn(6, 1)))
|
|
self.assertFalse(eval_guards(gm, torch.randn(1, 2), torch.randn(4, 1)))
|
|
self.assertExpectedInline(show_guards(gm), """2*L['a'].size()[1]*L['b'].size()[0] > 20""")
|
|
|
|
def test_new_empty(self):
|
|
def f(a, b):
|
|
return a.new_empty(b.shape[0], b.shape[1] * 2)
|
|
|
|
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False).shape_env
|
|
|
|
def test_size_with_tensor(self):
|
|
def f(tensor):
|
|
max_size = torch.tensor([800, 1216], dtype=torch.int64)
|
|
batch_shape = [2] + list(tensor.shape[:-2]) + list(max_size)
|
|
return tensor.new_empty(batch_shape)
|
|
|
|
a = torch.randn(3, 800, 1199)
|
|
self.assertRaisesRegex(
|
|
RuntimeError, "data-dependent", lambda: make_fx(f, tracing_mode="symbolic")(a)
|
|
)
|
|
|
|
def test_expand(self):
|
|
def f(a):
|
|
b = torch.mul(a, a)
|
|
c = b.expand(a.shape)
|
|
return c
|
|
|
|
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
|
|
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
|
|
|
|
def test_metadata(self):
|
|
def f(a, b):
|
|
d = a.new_empty(a.shape[0] + b.shape[0])
|
|
return d
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(5), torch.randn(4))
|
|
meta_c = _get_node(fx_g, lambda x: x.target == aten.new_empty.default)
|
|
meta_d = _get_node(fx_g, lambda x: x.target == operator.add)
|
|
self.assertTrue(meta_c.meta['val'].shape[0].node.expr == meta_d.meta['val'].node.expr)
|
|
|
|
def test_metadata_fresh(self):
|
|
def f(x):
|
|
assert x.shape[0] == 3
|
|
return x.cos()
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(3))
|
|
meta_cos = _get_node(fx_g, lambda x: x.target == aten.cos.default)
|
|
meta_inp = _get_node(fx_g, lambda x: x.op == 'placeholder')
|
|
self.assertTrue(meta_cos.meta['val'].shape[0] == 3)
|
|
# Checks if the input expr has been updated even though the constraint
|
|
# happened afterwards
|
|
self.assertTrue(meta_inp.meta['val'].shape[0] == 3)
|
|
|
|
def test_elementwise_meta_with_sym_numbers(self):
|
|
def f(x, offset, as_sym_float=False):
|
|
x0 = x.size()[0]
|
|
if as_sym_float:
|
|
x0 = sym_float(x0)
|
|
return torch.add(x0, offset)
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2.0, False)
|
|
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
|
|
self.assertEqual(meta_add.meta['val'].shape, ())
|
|
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, False)
|
|
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
|
|
self.assertEqual(meta_add.meta['val'].shape, ())
|
|
self.assertEqual(meta_add.meta['val'].dtype, torch.int64)
|
|
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.rand(2, 3), 2, True)
|
|
meta_add = _get_node(fx_g, lambda x: x.target == aten.add.Tensor)
|
|
self.assertEqual(meta_add.meta['val'].shape, ())
|
|
self.assertEqual(meta_add.meta['val'].dtype, torch.float32)
|
|
|
|
def test_return_symint(self):
|
|
def f(x):
|
|
return x.shape[0], x.cos(), x.shape[0] / 5
|
|
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
|
|
|
|
def f(x):
|
|
return x.shape
|
|
self._test_dynamic(f, [(5, 3)], [[(4, 6)]])
|
|
|
|
def test_rmethod(self):
|
|
def f(x):
|
|
return x.size(0) + x
|
|
self._test_dynamic(f, [(5,)], [[(4,)], [(12,)]])
|
|
|
|
def test_mega_guard(self):
|
|
def f(a, b):
|
|
assert a.shape[0] == b.shape[0] * 2
|
|
return a.cos()
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(torch.randn(16), torch.randn(8))
|
|
from torch._dynamo.source import LocalSource
|
|
self.assertExpectedInline(
|
|
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=False)), # noqa: B950
|
|
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "L['a'].stride()[0] == 1", "L['a'].storage_offset() == 0", "L['b'].stride()[0] == 1", "L['b'].storage_offset() == 0", "2 <= L['b'].size()[0]"]""" # noqa: B950
|
|
)
|
|
self.assertExpectedInline(
|
|
str(fx_g.shape_env.produce_guards(fx_placeholder_vals(fx_g), [LocalSource("a"), LocalSource("b")], ignore_static=True)), # noqa: B950
|
|
"""["L['a'].size()[0] == 2*L['b'].size()[0]", "2 <= L['b'].size()[0]"]""" # noqa: B950
|
|
)
|
|
|
|
def test_guard_upperbound_range_refinement(self):
|
|
def f(a):
|
|
assert a.shape[0] > 5 and a.shape[0] > 12
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
|
|
self.assertExpectedInline(show_guards(tensor), """L['a'].size()[0] > 12""")
|
|
|
|
def test_guard_lowerbound_range_refinement(self):
|
|
def f(a):
|
|
assert a.shape[0] < 20 and a.shape[0] < 30
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(15))
|
|
self.assertExpectedInline(show_guards(tensor), """L['a'].size()[0] < 20""")
|
|
|
|
def test_guard_upperbound_range_refinement_multivariate(self):
|
|
def f(a):
|
|
assert a.shape[0] > 5 and a.shape[0] > 12
|
|
assert a.shape[1] > 5 and a.shape[1] > a.shape[0]
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 20)))
|
|
self.assertExpectedInline(show_guards(tensor), """\
|
|
L['a'].size()[1] > L['a'].size()[0]
|
|
L['a'].size()[0] > 12""")
|
|
|
|
def test_guard_lowerbound_range_refinement_multivariate(self):
|
|
def f(a):
|
|
assert a.shape[0] < 20 and a.shape[0] < 30
|
|
assert a.shape[1] < 30 and a.shape[1] < a.shape[0]
|
|
return a.cos()
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn((15, 5)))
|
|
self.assertExpectedInline(
|
|
show_guards(tensor),
|
|
"""\
|
|
L['a'].size()[1] < L['a'].size()[0]
|
|
L['a'].size()[0] < 20""")
|
|
|
|
def test_sym_storage_offset(self):
|
|
def f(x, y):
|
|
return x + y
|
|
|
|
inp = (torch.randn(8)[3:], torch.randn(5))
|
|
fx_g = make_fx(f, tracing_mode="symbolic")(*inp)
|
|
inp = (torch.randn(8)[3:], torch.randn(5))
|
|
self.assertEqual(fx_g(*inp), f(*inp))
|
|
|
|
def _assert_no_guards(self, fx_g, free_symbols):
|
|
assert _get_free_symbols(fx_g.shape_env) == free_symbols, fx_g.shape_env.var_to_val
|
|
assert len(fx_g.shape_env.get_nontrivial_guards()) == 0, fx_g.shape_env.format_guards()
|
|
|
|
def test_guards_equal(self):
|
|
def f(a, b):
|
|
return a * b
|
|
|
|
# NB: Numbers are carefully chosen to avoid duck shaping from applying
|
|
|
|
fx_g = _trace(f, (5, 6), (5, 6))
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
fx_g = _trace(f, (5, 6, 7), (5, 6, 7))
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
fx_g = _trace(f, (5, 1), (1, 6))
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
def f(a, b, c, d):
|
|
a = a + b
|
|
cat = torch.cat([c, d])
|
|
return a + cat
|
|
|
|
fx_g = _trace(f, 7, 7, 4, 3)
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
def f(a, b, c, d, e):
|
|
vals = [a, b, c, d, e]
|
|
x = a
|
|
for idx in range(len(vals) - 1):
|
|
x = torch.cat([x, vals[idx]]) + vals[idx + 1]
|
|
return x
|
|
|
|
fx_g = _trace(f, 2, 4, 8, 16, 32)
|
|
self._assert_no_guards(fx_g, 1)
|
|
|
|
def f(a, b):
|
|
a = a.view(b.shape[0])
|
|
return a + b.sum()
|
|
|
|
fx_g = _trace(f, (4, 2), 8)
|
|
self._assert_no_guards(fx_g, 2)
|
|
|
|
fx_g = _trace(f, (4, 2), (8, 5))
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
fx_g = _trace(f, (2, 3, 4), 24)
|
|
self._assert_no_guards(fx_g, 3)
|
|
|
|
def test_nonidentity_transitive_guards(self):
|
|
def f(a, b, c, d, e):
|
|
vals = [a, b, c, d, e]
|
|
cat_vals = []
|
|
for idx in range(len(vals) - 1):
|
|
cat_vals.append(torch.cat([vals[idx], vals[idx]]))
|
|
final_vals = []
|
|
for a, b in reversed(list(zip(cat_vals, vals[1:]))):
|
|
final_vals.append(a + b)
|
|
return final_vals
|
|
|
|
fx_g = _trace(f, 2, 4, 8, 16, 32)
|
|
self.assertExpectedInline(show_guards(fx_g), """""")
|
|
|
|
@torch._dynamo.config.patch(translation_validation=True)
|
|
def test_constant_specialization(self):
|
|
def f(t):
|
|
assert t.shape[0] == 10
|
|
return t
|
|
|
|
tensor = make_fx(f, tracing_mode="symbolic")(torch.randn(10))
|
|
self.assertExpectedInline(show_guards(tensor), """""")
|
|
|
|
|
|
make_fx_failures = {
|
|
# unknown
|
|
xfail('allclose'),
|
|
xfail('equal'),
|
|
# empty
|
|
skip('new_empty'),
|
|
skip('empty_like'),
|
|
skip('empty'),
|
|
skip('empty_permuted'),
|
|
# flaky
|
|
skip('linalg.lstsq', 'grad_oriented'),
|
|
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
|
|
skip('linalg.lstsq'), # flaky, probably just a precision issue
|
|
|
|
# data-dependent control flow
|
|
skip('item'),
|
|
xfail('cov'),
|
|
xfail('nn.functional.gaussian_nll_loss'),
|
|
xfail('tensor_split'),
|
|
xfail('corrcoef'),
|
|
xfail('quantile'),
|
|
xfail('nanquantile'),
|
|
xfail('narrow'),
|
|
|
|
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
|
|
xfail('sparse.sampled_addmm'),
|
|
xfail('sparse.mm', 'reduce'),
|
|
|
|
# proxy tensor doesn't support sparse correctly right now
|
|
skip('to_sparse'),
|
|
# segfaults
|
|
skip('block_diag'),
|
|
|
|
# AssertionError: Tensor-likes are not close!
|
|
skip('empty_strided', '', device_type='cpu'),
|
|
}
|
|
|
|
fake_tensor_failures = {
|
|
# FakeTensor fallback doesn't work
|
|
xfail('_segment_reduce', 'lengths'),
|
|
# cannot do these as they rely on tensor data
|
|
xfail('repeat_interleave'),
|
|
# ASAN failures due to divide by 0
|
|
skip('nn.functional.nll_loss'),
|
|
}
|
|
|
|
symbolic_tensor_failures = {
|
|
xfail('linalg.eig'),
|
|
xfail('linalg.eigvals'),
|
|
xfail('combinations', ''),
|
|
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
|
|
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
|
|
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
|
|
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
|
|
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
|
|
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
|
|
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
|
|
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.ctc_loss'), # aten._ctc_loss.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
|
|
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
|
|
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
|
|
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
|
|
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
|
|
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
|
|
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
|
|
xfail('repeat_interleave', ''), # Cannot call sizes() on tensor with symbolic sizes/strides
|
|
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
|
|
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
|
|
xfail('unique_consecutive', ''), # aten.unique_consecutive.default - couldn't find symbolic meta function/decomposition
|
|
xfail('unique', ''), # aten._unique2.default - couldn't find symbolic meta function/decomposition
|
|
|
|
# many complex operators incorrect striding, metadata
|
|
xfail('fft.fft', ''),
|
|
xfail('fft.hfft2', ''),
|
|
xfail('fft.hfft', ''),
|
|
xfail('fft.hfftn', ''),
|
|
xfail('fft.ifft', ''),
|
|
xfail('fft.ihfft2', ''),
|
|
xfail('fft.ihfft', ''),
|
|
xfail('fft.ihfftn', ''),
|
|
xfail('fft.ihfft2', ''),
|
|
xfail('fft.irfft2', ''),
|
|
xfail('fft.irfft', ''),
|
|
xfail('fft.irfftn', ''),
|
|
xfail('fft.rfft2', ''),
|
|
xfail('fft.rfft', ''),
|
|
xfail('fft.rfftn', ''),
|
|
xfail('stft', '')
|
|
}
|
|
symbolic_tensor_segfaults = {
|
|
skip('nn.functional.batch_norm') # Segfault??
|
|
}
|
|
|
|
symbolic_tensor_failures.update(symbolic_tensor_segfaults)
|
|
|
|
outplace_symbolic_tensor_failures = {
|
|
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
|
|
}
|
|
|
|
inplace_symbolic_tensor_failures = {
|
|
# bugs
|
|
xfail('float_power', ''), # base given to float_power_ has dtype Float but the operation's result requires dtype Double
|
|
# decomp not implemented
|
|
xfail('unique', ''),
|
|
}
|
|
|
|
# Copies inputs to inplace operations to avoid inplace modifications
|
|
# to leaves requiring gradient
|
|
def _get_safe_inplace(inplace_variant):
|
|
@functools.wraps(inplace_variant)
|
|
def _fn(t, *args, **kwargs):
|
|
return inplace_variant(t.clone(), *args, **kwargs)
|
|
|
|
return _fn
|
|
|
|
def _test_make_fx_helper(self, device, dtype, op, tracing_mode, inplace=False):
|
|
fn = _get_safe_inplace(op.get_inplace()) if inplace else op.op
|
|
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
|
|
|
|
# Limit ourselves to first 100 inputs so symbolic tracing tests don't take too long
|
|
for sample_input in itertools.islice(sample_inputs_itr, 100):
|
|
if inplace and sample_input.broadcasts_input:
|
|
continue
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
|
|
try:
|
|
optests.make_fx_check(fn, args, kwargs, tracing_mode, self.assertEqual,
|
|
randomize_data=True)
|
|
except DynamicOutputShapeException:
|
|
self.skipTest("Dynamic output shape operation in trace")
|
|
|
|
class TestProxyTensorOpInfo(TestCase):
|
|
@ops(op_db + custom_op_db + control_flow_opinfo_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
|
|
def test_make_fx_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "real")
|
|
|
|
@ops(op_db + custom_op_db + control_flow_opinfo_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
|
|
def test_make_fx_fake_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "fake")
|
|
|
|
@ops(op_db + custom_op_db + control_flow_opinfo_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | outplace_symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic")
|
|
|
|
@ops(op_db + custom_op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive_inplace',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures | inplace_symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive_inplace(self, device, dtype, op):
|
|
if not op.get_inplace():
|
|
self.skipTest("No inplace variable for this op")
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic", inplace=True)
|
|
|
|
|
|
only_for = ("cpu")
|
|
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|