mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/25597 We now take advantage of the new bitset representation TensorTypeSet to store "Variable-ness" of a tensor directly in the dispatch key. We introduce a new thread local TensorTypeSet "excluded" and replace the previous thread local boolean with it; we no longer have to query `is_variable()` to do dispatch (I didn't delete `is_variable`, because there are still a lot of uses of it). The key change is in `dispatchTypeId`. Knock-on effects: * Because Variable is now a TensorTypeId, I can eliminate the out-of-line registration `registerVariableOp` for variables; instead, make the registrar take a TensorTypeId (instead of a Backend) and you just register under the Variable key. * Tensors aren't really ever created with Variable information initialized correctly at the start; instead, a tensor "becomes" a Variable because we set its `autograd_meta_`. These setters now correctly setup invariants on the dispatch type set. The new invariant is that if `autograd_meta_ != nullptr`, then `type_set().has(TensorTypeId::VariableTensorId)`. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Differential Revision: D17265919 Pulled By: ezyang fbshipit-source-id: a90a7ed14f5cb1086137483ae3d0646fcd4c42d0
223 lines
5.7 KiB
C++
223 lines
5.7 KiB
C++
#include <c10/core/TensorImpl.h>
|
|
|
|
#include <c10/core/Backend.h>
|
|
#include <c10/core/WrapDimMinimal.h>
|
|
#include <c10/core/impl/LocalTensorTypeSet.h>
|
|
#include <c10/util/Optional.h>
|
|
|
|
C10_DEFINE_bool(
|
|
caffe2_keep_on_shrink,
|
|
true,
|
|
"If set, keeps memory when a tensor is shrinking its size.");
|
|
|
|
C10_DEFINE_int64(
|
|
caffe2_max_keep_on_shrink_memory,
|
|
LLONG_MAX,
|
|
"The maximum memory in bytes to keep on shrink, if the difference between "
|
|
"tensor sizes is bigger than this then tensor will be reset.");
|
|
|
|
namespace c10 {
|
|
|
|
const char * const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
|
|
"is not allowed on a Tensor created from .data or .detach().\n"
|
|
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
|
|
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
|
|
"For example, change:\n"
|
|
" x.data.set_(y)\n"
|
|
"to:\n"
|
|
" with torch.no_grad():\n"
|
|
" x.set_(y)";
|
|
|
|
at::Tensor& TensorImpl::grad() {
|
|
if (autograd_meta()) {
|
|
return autograd_meta()->grad();
|
|
} else {
|
|
AT_ERROR("grad is not implemented for Tensor");
|
|
}
|
|
}
|
|
|
|
const at::Tensor& TensorImpl::grad() const {
|
|
if (autograd_meta()) {
|
|
return autograd_meta()->grad();
|
|
} else {
|
|
AT_ERROR("grad is not implemented for Tensor");
|
|
}
|
|
}
|
|
|
|
TensorImpl::TensorImpl(Storage&& storage, TensorTypeSet type_set)
|
|
: TensorImpl(std::move(storage), type_set, storage.dtype(), storage.device()) {}
|
|
|
|
TensorImpl::TensorImpl(TensorTypeSet type_set, const caffe2::TypeMeta& data_type, c10::optional<c10::Device> device_opt)
|
|
: TensorImpl({}, type_set, data_type, std::move(device_opt)) {}
|
|
|
|
TensorImpl::TensorImpl(Storage&& storage, TensorTypeSet type_set, const caffe2::TypeMeta& data_type,
|
|
c10::optional<c10::Device> device_opt)
|
|
: storage_(std::move(storage)),
|
|
sizes_{0},
|
|
storage_offset_(0),
|
|
numel_(0),
|
|
data_type_(data_type),
|
|
device_opt_(device_opt),
|
|
type_set_(type_set.remove(TensorTypeId::VariableTensorId)) {
|
|
if (!type_set.empty()) {
|
|
AT_ASSERT(data_type.id() == caffe2::TypeIdentifier::uninitialized() ||
|
|
device_opt_.has_value());
|
|
// UndefinedTensorImpl is a singleton, so we skip logging it
|
|
C10_LOG_API_USAGE_ONCE("tensor.create");
|
|
}
|
|
// we would also like to check that non-cpu devices have an index, but some Caffe2 operators create
|
|
// Storages with default devices.
|
|
strides_.push_back(1);
|
|
}
|
|
|
|
IntArrayRef TensorImpl::sizes() const {
|
|
return sizes_;
|
|
}
|
|
|
|
IntArrayRef TensorImpl::strides() const {
|
|
return strides_;
|
|
}
|
|
|
|
bool TensorImpl::compute_contiguous() const {
|
|
bool is_contiguous = true;
|
|
if (is_empty())
|
|
return is_contiguous;
|
|
int64_t z = 1;
|
|
for (int64_t d = dim() - 1; d >= 0; d--) {
|
|
if (size(d) != 1) {
|
|
if (stride(d) == z) {
|
|
z *= size(d);
|
|
} else {
|
|
is_contiguous = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return is_contiguous;
|
|
}
|
|
|
|
bool TensorImpl::compute_channels_last_contiguous() const {
|
|
if (dim() == 4) {
|
|
int64_t expected = 1;
|
|
for (auto& d : {1, 3, 2, 0}) {
|
|
if (size(d) != 1) {
|
|
if (stride(d) == expected) {
|
|
expected *= size(d);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool TensorImpl::compute_strides_like_channels_last() const {
|
|
if (dim() == 4) {
|
|
int64_t min = 0;
|
|
for (auto& d : {1, 3, 2, 0}) {
|
|
if (size(d) != 1) {
|
|
if (stride(d) > min) {
|
|
min = stride(d);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void TensorImpl::release_resources() {
|
|
autograd_meta_.reset();
|
|
if (storage_) {
|
|
storage_ = {};
|
|
}
|
|
}
|
|
|
|
int64_t TensorImpl::dim() const {
|
|
return sizes_.size();
|
|
}
|
|
|
|
int64_t TensorImpl::size(int64_t d) const {
|
|
d = at::maybe_wrap_dim(d, dim(), false);
|
|
return sizes_[d];
|
|
}
|
|
|
|
int64_t TensorImpl::stride(int64_t d) const {
|
|
d = at::maybe_wrap_dim(d, dim(), false);
|
|
return strides_[d];
|
|
}
|
|
|
|
TensorImpl* TensorImpl::maybe_zero_dim(bool condition_when_zero_dim) {
|
|
bool set_zero_dim = condition_when_zero_dim && this->sizes().size() == 1 && this->size(0) == 1;
|
|
if (set_zero_dim) {
|
|
resize_dim(0);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
bool TensorImpl::has_storage() const {
|
|
return storage_;
|
|
}
|
|
|
|
bool TensorImpl::is_contiguous(at::MemoryFormat memory_format) const {
|
|
#ifdef DEBUG
|
|
AT_ASSERT(compute_contiguous() == is_contiguous_);
|
|
#endif
|
|
if (memory_format == at::MemoryFormat::ChannelsLast) {
|
|
return is_channels_last_contiguous_;
|
|
}
|
|
return is_contiguous_;
|
|
}
|
|
|
|
const Storage& TensorImpl::storage() const {
|
|
return storage_;
|
|
}
|
|
|
|
static void deletePlacementDeleteContext(void* ptr) {
|
|
delete static_cast<PlacementDeleteContext*>(ptr);
|
|
}
|
|
|
|
at::DataPtr PlacementDeleteContext::makeDataPtr(
|
|
at::DataPtr&& data_ptr,
|
|
PlacementDtor placement_dtor,
|
|
size_t size,
|
|
at::Device device) {
|
|
auto* ptr = data_ptr.get();
|
|
return {ptr,
|
|
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
|
|
&deletePlacementDeleteContext,
|
|
device};
|
|
}
|
|
|
|
AutogradMetaInterface::~AutogradMetaInterface() {}
|
|
|
|
#ifdef BUILD_NAMEDTENSOR
|
|
NamedTensorMetaInterface::~NamedTensorMetaInterface() {}
|
|
|
|
std::unique_ptr<NamedTensorMetaInterface> NamedTensorMetaInterface::clone() const {
|
|
TORCH_INTERNAL_ASSERT(
|
|
false,
|
|
"Attempting to clone a NamedTensorMetaInterface instance.");
|
|
}
|
|
|
|
int64_t NamedTensorMetaInterface::slow_dim() const {
|
|
TORCH_INTERNAL_ASSERT(
|
|
false,
|
|
"NamedTensorMetaInterface::slow_dim not implemented.");
|
|
}
|
|
#endif
|
|
|
|
bool NonVariableTypeMode::is_enabled() {
|
|
return !impl::tls_variable_is_enabled();
|
|
}
|
|
|
|
void NonVariableTypeMode::set_enabled(bool enabled) {
|
|
impl::tls_variable_set_enabled(!enabled);
|
|
}
|
|
|
|
} // namespace c10
|