mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56079 Test Plan: Imported from OSS Reviewed By: iseeyuan Differential Revision: D27828149 Pulled By: tugsbayasgalan fbshipit-source-id: 9291ddbf01853354fca0fa0a58b8115d5d2294da
64 lines
2.2 KiB
C++
64 lines
2.2 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/jit/ir/irparser.h>
|
|
#include <torch/csrc/jit/runtime/autodiff.h>
|
|
#include <torch/csrc/jit/runtime/interpreter.h>
|
|
#include <torch/csrc/jit/testing/file_check.h>
|
|
|
|
#define ASSERT_THROWS_WITH_MESSAGE(statement, substring) \
|
|
try { \
|
|
(void)statement; \
|
|
FAIL(); \
|
|
} catch (const std::exception& e) { \
|
|
ASSERT_NE(std::string(e.what()).find(substring), std::string::npos); \
|
|
}
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using tensor_list = std::vector<at::Tensor>;
|
|
using namespace torch::autograd;
|
|
|
|
// work around the fact that variable_tensor_list doesn't duplicate all
|
|
// of std::vector's constructors.
|
|
// most constructors are never used in the implementation, just in our tests.
|
|
Stack createStack(std::vector<at::Tensor>&& list);
|
|
|
|
void assertAllClose(const tensor_list& a, const tensor_list& b);
|
|
|
|
std::vector<at::Tensor> run(
|
|
InterpreterState& interp,
|
|
const std::vector<at::Tensor>& inputs);
|
|
|
|
std::pair<tensor_list, tensor_list> runGradient(
|
|
Gradient& grad_spec,
|
|
tensor_list& tensors_in,
|
|
tensor_list& tensor_grads_in);
|
|
|
|
std::shared_ptr<Graph> build_lstm();
|
|
std::shared_ptr<Graph> build_mobile_export_analysis_graph();
|
|
std::shared_ptr<Graph> build_mobile_export_analysis_graph_with_vararg();
|
|
std::shared_ptr<Graph> build_mobile_export_analysis_graph_nested();
|
|
std::shared_ptr<Graph> build_mobile_export_analysis_graph_non_const();
|
|
|
|
at::Tensor t_use(at::Tensor x);
|
|
at::Tensor t_def(at::Tensor x);
|
|
|
|
// given the difference of output vs expected tensor, check whether the
|
|
// difference is within a relative tolerance range. This is a standard way of
|
|
// matching tensor values up to certain precision
|
|
bool checkRtol(const at::Tensor& diff, const std::vector<at::Tensor> inputs);
|
|
bool almostEqual(const at::Tensor& a, const at::Tensor& b);
|
|
|
|
bool exactlyEqual(const at::Tensor& a, const at::Tensor& b);
|
|
|
|
std::pair<at::Tensor, at::Tensor> lstm(
|
|
at::Tensor input,
|
|
at::Tensor hx,
|
|
at::Tensor cx,
|
|
at::Tensor w_ih,
|
|
at::Tensor w_hh);
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|