pytorch/c10/core/TensorImpl.cpp
Igor Fedan 2020cc0cd1 Fix compute_non_overlapping_and_dense() (#28551)
Summary:
There are some cases when compute_non_overlapping_and_dense() doesn't work properly:
Example:
```
Tensor t = at::tensor(1).expand({1, 3, 2});
EXPECT_FALSE(t.is_contiguous());
EXPECT_FALSE(t.is_non_overlapping_and_dense()); //FAIL!!!
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28551

Differential Revision: D18115570

Pulled By: ifedan

fbshipit-source-id: 35b1a9473a28037d41f7177a8de23ffefa7faa13
2019-10-24 11:53:52 -07:00

230 lines
5.9 KiB
C++

#include <c10/core/TensorImpl.h>
#include <c10/core/Backend.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/core/impl/LocalTensorTypeSet.h>
#include <c10/util/Optional.h>
C10_DEFINE_bool(
caffe2_keep_on_shrink,
true,
"If set, keeps memory when a tensor is shrinking its size.");
C10_DEFINE_int64(
caffe2_max_keep_on_shrink_memory,
LLONG_MAX,
"The maximum memory in bytes to keep on shrink, if the difference between "
"tensor sizes is bigger than this then tensor will be reset.");
namespace c10 {
const char * const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
"is not allowed on a Tensor created from .data or .detach().\n"
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
"For example, change:\n"
" x.data.set_(y)\n"
"to:\n"
" with torch.no_grad():\n"
" x.set_(y)";
at::Tensor& TensorImpl::grad() {
if (autograd_meta()) {
return autograd_meta()->grad();
} else {
AT_ERROR("grad is not implemented for Tensor");
}
}
const at::Tensor& TensorImpl::grad() const {
if (autograd_meta()) {
return autograd_meta()->grad();
} else {
AT_ERROR("grad is not implemented for Tensor");
}
}
TensorImpl::TensorImpl(Storage&& storage, TensorTypeSet type_set)
: TensorImpl(std::move(storage), type_set, storage.dtype(), storage.device()) {}
TensorImpl::TensorImpl(TensorTypeSet type_set, const caffe2::TypeMeta& data_type, c10::optional<c10::Device> device_opt)
: TensorImpl({}, type_set, data_type, std::move(device_opt)) {}
TensorImpl::TensorImpl(Storage&& storage, TensorTypeSet type_set, const caffe2::TypeMeta& data_type,
c10::optional<c10::Device> device_opt)
: storage_(std::move(storage)),
sizes_{0},
storage_offset_(0),
numel_(0),
data_type_(data_type),
device_opt_(device_opt),
type_set_(type_set.remove(TensorTypeId::VariableTensorId)) {
if (!type_set.empty()) {
AT_ASSERT(data_type.id() == caffe2::TypeIdentifier::uninitialized() ||
device_opt_.has_value());
// UndefinedTensorImpl is a singleton, so we skip logging it
C10_LOG_API_USAGE_ONCE("tensor.create");
}
// we would also like to check that non-cpu devices have an index, but some Caffe2 operators create
// Storages with default devices.
strides_.push_back(1);
}
IntArrayRef TensorImpl::sizes() const {
return sizes_;
}
IntArrayRef TensorImpl::strides() const {
return strides_;
}
bool TensorImpl::compute_contiguous() const {
bool is_contiguous = true;
if (is_empty())
return is_contiguous;
int64_t z = 1;
for (int64_t d = dim() - 1; d >= 0; d--) {
if (size(d) != 1) {
if (stride(d) == z) {
z *= size(d);
} else {
is_contiguous = false;
break;
}
}
}
return is_contiguous;
}
bool TensorImpl::compute_channels_last_contiguous() const {
if (dim() == 4) {
int64_t expected = 1;
for (auto& d : {1, 3, 2, 0}) {
if (size(d) != 1) {
if (stride(d) == expected) {
expected *= size(d);
} else {
return false;
}
}
}
return true;
}
return false;
}
bool TensorImpl::compute_strides_like_channels_last() const {
if (dim() == 4) {
int64_t min = 0;
for (auto& d : {1, 3, 2, 0}) {
if (size(d) != 1) {
if (stride(d) > min) {
min = stride(d);
} else {
return false;
}
}
}
return true;
}
return false;
}
bool TensorImpl::compute_non_overlapping_and_dense() const {
if (dim() == 1) {
return size(0) < 2 || stride(0) == 1;
}
SmallVector<int64_t,5> perm;
perm.resize(dim());
for (int64_t i = 0; i < dim(); i ++) {
perm[i] = i;
}
// Sort by strides, leaving 0 and 1 sized dims at the end of the array
std::sort(perm.begin(), perm.end(), [&](int64_t a, int64_t b) {
if (sizes_[a] < 2) {
return false;
} else if (sizes_[b] < 2) {
return true;
}
return strides_[a] < strides_[b];
});
auto require_stride = 1;
for (int64_t i = 0; i < dim(); i ++) {
if (sizes_[perm[i]] < 2) {
return true;
}
if (strides_[perm[i]] != require_stride) {
return false;
}
require_stride *= sizes_[perm[i]];
}
return true;
}
void TensorImpl::release_resources() {
autograd_meta_.reset();
if (storage_) {
storage_ = {};
}
}
int64_t TensorImpl::dim() const {
return sizes_.size();
}
int64_t TensorImpl::size(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return sizes_[d];
}
int64_t TensorImpl::stride(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return strides_[d];
}
TensorImpl* TensorImpl::maybe_zero_dim(bool condition_when_zero_dim) {
bool set_zero_dim = condition_when_zero_dim && this->sizes().size() == 1 && this->size(0) == 1;
if (set_zero_dim) {
resize_dim(0);
}
return this;
}
bool TensorImpl::has_storage() const {
return storage_;
}
bool TensorImpl::is_contiguous(at::MemoryFormat memory_format) const {
#ifdef DEBUG
AT_ASSERT(compute_contiguous() == is_contiguous_);
#endif
if (memory_format == at::MemoryFormat::ChannelsLast) {
return is_channels_last_contiguous_;
}
return is_contiguous_;
}
const Storage& TensorImpl::storage() const {
return storage_;
}
static void deletePlacementDeleteContext(void* ptr) {
delete static_cast<PlacementDeleteContext*>(ptr);
}
at::DataPtr PlacementDeleteContext::makeDataPtr(
at::DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size,
at::Device device) {
auto* ptr = data_ptr.get();
return {ptr,
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
&deletePlacementDeleteContext,
device};
}
AutogradMetaInterface::~AutogradMetaInterface() {}
} // namespace c10