mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/64382 * This `use_external_data_format` parameter is used for large models cannot be exported because of the 2GB protobuf limit. * When `use_external_data_format` set to True, the model is exported in ONNX external data format, in which case some of the model parameters are stored in external binary files and not in the ONNX model file itself. * This PR will set this paramter to DEPRECATED and check the model proto sizes by code instead of by user, if the sizes lager than 2GB, then `use_external_data_format = True` automatically. Test Plan: Imported from OSS Reviewed By: ezyang Differential Revision: D30905265 Pulled By: malfet fbshipit-source-id: 82b4e17bfa6a8de2bfd700a5282c12f6835603cb Co-authored-by: hwangdeyu <dejack953@outlook.com>
989 lines
34 KiB
C++
989 lines
34 KiB
C++
#include <torch/csrc/jit/python/python_ir.h>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <torch/csrc/jit/ir/alias_analysis.h>
|
|
#include <torch/csrc/jit/ir/ir.h>
|
|
#include <torch/csrc/jit/passes/canonicalize.h>
|
|
#include <torch/csrc/jit/passes/onnx/helper.h>
|
|
#include <torch/csrc/jit/passes/shape_analysis.h>
|
|
#include <torch/csrc/jit/python/pybind.h>
|
|
#include <torch/csrc/jit/python/python_tracer.h>
|
|
#include <torch/csrc/jit/runtime/argument_spec.h>
|
|
#include <torch/csrc/jit/serialization/export.h>
|
|
#include <torch/csrc/jit/serialization/python_print.h>
|
|
#include <torch/csrc/python_headers.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/python_strings.h>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <utility>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
// Controls whether graph source ranges are printed by default
|
|
bool global_print_source_ranges = true;
|
|
|
|
Symbol ConcretePythonOp::Kind = prim::PythonOp;
|
|
|
|
using c10::Type;
|
|
|
|
std::string getPythonName(const PyObject* obj_) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
PyObject* obj = const_cast<PyObject*>(obj_);
|
|
auto v = py::getattr(obj, "__name__", py::str("<python_value>"));
|
|
// if this was a autograd.Function recover the name of the class
|
|
return py::str(v);
|
|
}
|
|
|
|
std::ostream& printPyObject(std::ostream& out, const THPObjectPtr& obj) {
|
|
pybind11::gil_scoped_acquire gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
auto pyobj = py::handle(const_cast<PyObject*>(obj.get()));
|
|
if (py::isinstance<py::tuple>(pyobj)) {
|
|
// This special-case for printing tuples handles a problem where
|
|
// str((2L, 3L)) outputs "(2L, 3L)" in Python 2 but "(2, 3)"
|
|
// in Python 3. In order to suppress the L-suffix, we must
|
|
// manually print the string ourselves, calling str() on the
|
|
// sub-elements.
|
|
//
|
|
// This is a fairly fragile fix (What if you have nested tuples
|
|
// in tuples? What if you have dictionaries?) but it seems to hit
|
|
// the cases that are triggered in practice in onnx-pytorch. Revisit
|
|
// this code if this is not the case.
|
|
//
|
|
// By the way, one non-solution for this problem is to monkeypatch
|
|
// tuple.__str__; this doesn't work because Python doesn't allow
|
|
// monkeypatching methods of built-in types.
|
|
auto pytuple = pyobj.cast<py::tuple>();
|
|
out << "(";
|
|
size_t i = 0;
|
|
for (const auto& o : pytuple) {
|
|
if (i > 0) {
|
|
out << ", ";
|
|
}
|
|
THPObjectPtr str(py::str(o).release().ptr());
|
|
out << THPUtils_unpackString(str.get());
|
|
i++;
|
|
}
|
|
if (i == 1) {
|
|
out << ",";
|
|
}
|
|
out << ")";
|
|
return out;
|
|
} else {
|
|
return out << THPUtils_unpackString(py::str(pyobj).ptr());
|
|
}
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
std::vector<Node*> ret;
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
ret.push_back(n);
|
|
}
|
|
if (recurse) {
|
|
auto nodes = findAllNodes(n->blocks(), kind, recurse);
|
|
ret.insert(ret.end(), nodes.begin(), nodes.end());
|
|
}
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
std::vector<Node*> findAllNodes(
|
|
Block* block,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
std::vector<Block*> blocks = {block};
|
|
return findAllNodes(blocks, kind, recurse);
|
|
}
|
|
|
|
Node* findNode(
|
|
c10::ArrayRef<torch::jit::Block*> blocks,
|
|
Symbol kind,
|
|
bool recurse = true) {
|
|
for (Block* block : blocks) {
|
|
for (Node* n : block->nodes()) {
|
|
if (n->kind() == kind) {
|
|
return n;
|
|
}
|
|
if (recurse) {
|
|
auto node = findNode(n->blocks(), kind, recurse);
|
|
if (node != nullptr) {
|
|
return node;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Node* findNode(Block* block, Symbol kind, bool recurse = true) {
|
|
std::vector<Block*> blocks = {block};
|
|
return findNode(blocks, kind, recurse);
|
|
}
|
|
|
|
std::string ConcretePythonOp::name() const {
|
|
pybind11::gil_scoped_acquire gil;
|
|
if (auto autograd = autogradFunction()) {
|
|
return getPythonName(autograd->get());
|
|
} else {
|
|
return getPythonName(pyobj.get());
|
|
}
|
|
}
|
|
|
|
void ConcretePythonOp::cloneFrom(Node* other_) {
|
|
// NOLINTNEXTLINE(bugprone-parent-virtual-call)
|
|
Node::cloneFrom(other_);
|
|
auto other = other_->cast<ConcretePythonOp>();
|
|
this->cconv = other->cconv;
|
|
Py_INCREF(other->pyobj.get());
|
|
this->pyobj = THPObjectPtr(other->pyobj.get());
|
|
for (auto& sa : other->scalar_args) {
|
|
Py_INCREF(sa.get());
|
|
this->scalar_args.emplace_back(sa.get());
|
|
}
|
|
}
|
|
|
|
// recover the autograd.Function instance, if this PythonOp's function
|
|
// was originally SomeFunction.apply
|
|
// used in ONNX for discovering symbolics
|
|
c10::optional<THPObjectPtr> ConcretePythonOp::autogradFunction() const {
|
|
pybind11::gil_scoped_acquire gil;
|
|
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
|
|
py::handle obj = const_cast<PyObject*>(pyobj.get());
|
|
|
|
auto r = py::getattr(obj, "__self__", py::none());
|
|
if (r.is_none())
|
|
return c10::nullopt;
|
|
|
|
auto apply = py::getattr(r, "apply", py::none());
|
|
if (apply.is_none())
|
|
return c10::nullopt;
|
|
|
|
auto c = PyObject_RichCompareBool(apply.ptr(), obj.ptr(), Py_NE);
|
|
if (PyErr_Occurred())
|
|
throw py::error_already_set();
|
|
if (c)
|
|
return c10::nullopt;
|
|
|
|
return THPObjectPtr(r.release().ptr());
|
|
}
|
|
|
|
void ConcretePythonOp::writeScalars(std::ostream& out) const {
|
|
out << "(";
|
|
int i = 0;
|
|
for (auto& scalar : scalar_args) {
|
|
if (i++ > 0)
|
|
out << ", ";
|
|
printPyObject(out, scalar);
|
|
}
|
|
out << ")";
|
|
}
|
|
|
|
void ConcretePythonOp::lint_python() const {
|
|
size_t n_scalars = 0, n_tensors = 0;
|
|
for (auto c : cconv) {
|
|
if (c == 'c') {
|
|
n_scalars++;
|
|
} else if (c == 'd') {
|
|
n_tensors++;
|
|
} else {
|
|
AT_ASSERT(0);
|
|
}
|
|
AT_ASSERT(static_cast<bool>(pyobj));
|
|
}
|
|
AT_ASSERT(n_scalars == scalar_args.size());
|
|
AT_ASSERT(n_tensors == inputs().size());
|
|
}
|
|
|
|
Node* Graph::createPythonOp(
|
|
THPObjectPtr&& pyobj,
|
|
const std::string& cconv,
|
|
pyobj_list&& scalar_args) {
|
|
ConcretePythonOp* op = new ConcretePythonOp(this);
|
|
return op->init(std::move(pyobj), cconv, std::move(scalar_args));
|
|
}
|
|
|
|
void initPythonIRBindings(PyObject* module_) {
|
|
auto m = py::handle(module_).cast<py::module>();
|
|
|
|
py::class_<AliasDb, std::shared_ptr<AliasDb>>(m, "AliasDb")
|
|
.def("dump", &AliasDb::dump)
|
|
.def("to_graphviz_str", &AliasDb::toGraphviz)
|
|
.def("__str__", &AliasDb::toString);
|
|
|
|
#define GS(name) def(#name, &Graph ::name)
|
|
py::class_<Graph, std::shared_ptr<Graph>>(m, "Graph")
|
|
.def(py::init<>())
|
|
.def(
|
|
"__repr__",
|
|
[&](Graph& g) { return g.toString(global_print_source_ranges); })
|
|
.def("str", &Graph::toString, py::arg("print_source_ranges") = true)
|
|
.def_readonly_static(
|
|
"global_print_source_ranges", &global_print_source_ranges)
|
|
.def_static(
|
|
"set_global_print_source_ranges",
|
|
[&](const bool enabled) { global_print_source_ranges = enabled; },
|
|
py::arg("enabled") = true)
|
|
.def(
|
|
"alias_db",
|
|
[](std::shared_ptr<Graph> g) {
|
|
return std::make_shared<AliasDb>(std::move(g));
|
|
})
|
|
.def(
|
|
"dump_alias_db",
|
|
[](std::shared_ptr<Graph> g) {
|
|
AliasDb db(std::move(g));
|
|
db.dump();
|
|
})
|
|
.def(
|
|
"_export_onnx",
|
|
[](const std::shared_ptr<Graph>& g,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
const std::unordered_map<
|
|
std::string,
|
|
std::unordered_map<int64_t, std::string>>& dynamic_axes,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool strip_doc_string,
|
|
bool keep_initializers_as_inputs,
|
|
const std::map<std::string, int>& custom_opsets,
|
|
bool add_node_names,
|
|
bool use_external_data_format,
|
|
const std::string& onnx_file_path) {
|
|
std::string graph;
|
|
std::shared_ptr<::ONNX_NAMESPACE::ModelProto> model_proto;
|
|
RawDataExportMap export_map;
|
|
SymbolDimMap symbol_map;
|
|
bool val_use_external_data_format;
|
|
std::tie(
|
|
model_proto,
|
|
export_map,
|
|
symbol_map,
|
|
val_use_external_data_format) =
|
|
export_onnx(
|
|
g,
|
|
initializers,
|
|
onnx_opset_version,
|
|
dynamic_axes,
|
|
defer_weight_export,
|
|
operator_export_type,
|
|
strip_doc_string,
|
|
keep_initializers_as_inputs,
|
|
custom_opsets,
|
|
add_node_names,
|
|
use_external_data_format,
|
|
onnx_file_path);
|
|
std::unordered_map<std::string, py::bytes>
|
|
python_serialized_export_map;
|
|
for (auto& kv : export_map) {
|
|
auto t = kv.second;
|
|
size_t copy_bytes = t.element_size() * t.numel();
|
|
// TODO: this is an unnecessary copy. In theory we can directly
|
|
// return the map from identifier to Tensor, but we need some API
|
|
// in Python to get raw `bytes` containing the raw tensor data.
|
|
python_serialized_export_map[kv.first] =
|
|
py::bytes(static_cast<const char*>(t.data_ptr()), copy_bytes);
|
|
}
|
|
graph = serialize_model_proto_to_string(model_proto);
|
|
return std::make_tuple(
|
|
py::bytes(graph),
|
|
python_serialized_export_map,
|
|
val_use_external_data_format);
|
|
},
|
|
py::arg("initializers"),
|
|
py::arg("onnx_opset_version") = 0,
|
|
py::arg("dynamic_axes"),
|
|
py::arg("defer_weight_export") = false,
|
|
py::arg("operator_export_type") =
|
|
::torch::onnx::OperatorExportTypes::ONNX,
|
|
py::arg("strip_doc_string") = true,
|
|
py::arg("keep_initializers_as_inputs") = true,
|
|
py::arg("custom_opsets"),
|
|
py::arg("add_node_names") = true,
|
|
py::arg("use_external_data_format") = false,
|
|
py::arg("onnx_file_path") = std::string())
|
|
.def(
|
|
"_pretty_print_onnx",
|
|
[](const std::shared_ptr<Graph>& g,
|
|
const std::map<std::string, at::Tensor>& initializers,
|
|
int64_t onnx_opset_version,
|
|
bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool google_printer,
|
|
bool keep_initializers_as_inputs,
|
|
const std::map<std::string, int>& custom_opsets,
|
|
bool add_node_names) {
|
|
return pretty_print_onnx(
|
|
g,
|
|
initializers,
|
|
onnx_opset_version,
|
|
defer_weight_export,
|
|
operator_export_type,
|
|
google_printer,
|
|
keep_initializers_as_inputs,
|
|
custom_opsets,
|
|
add_node_names);
|
|
},
|
|
py::arg("initializers"),
|
|
py::arg("onnx_opset_version") = 0,
|
|
py::arg("defer_weight_export") = false,
|
|
py::arg("operator_export_type") =
|
|
::torch::onnx::OperatorExportTypes::ONNX,
|
|
py::arg("google_printer") = false,
|
|
py::arg("keep_initializers_as_inputs") = true,
|
|
py::arg("custom_opsets"),
|
|
py::arg("add_node_names") = true)
|
|
.def(
|
|
"inputs",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.inputs().begin(), g.inputs().end());
|
|
},
|
|
py::keep_alive<0, 1>())
|
|
.def(
|
|
"outputs",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.outputs().begin(), g.outputs().end());
|
|
},
|
|
py::keep_alive<0, 1>())
|
|
// We keep the graph alive while the iterator lives. Destroying
|
|
// nodes might still be hazardous.
|
|
.def(
|
|
"nodes",
|
|
[](Graph& g) {
|
|
return py::make_iterator(g.nodes().begin(), g.nodes().end());
|
|
},
|
|
py::keep_alive<0, 1>())
|
|
.def(
|
|
"findNode",
|
|
[](Graph& g, const std::string& kind, bool recurse) {
|
|
return findNode(g.block(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Graph& g, const std::string& kind, bool recurse) {
|
|
return findAllNodes(
|
|
g.block(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def("addInput", [](Graph& g) { return g.addInput(); })
|
|
.def("copy", [](Graph& g) { return g.copy(); })
|
|
.GS(eraseInput)
|
|
.GS(registerOutput)
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str) {
|
|
return g.create(Symbol::fromQualString(str));
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str, size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), noutputs);
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g, const char* str, const std::vector<Value*>& inputs) {
|
|
return g.create(Symbol::fromQualString(str), inputs);
|
|
})
|
|
.def(
|
|
"create",
|
|
[](Graph& g,
|
|
const char* str,
|
|
const std::vector<Value*>& inputs,
|
|
size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), inputs, noutputs);
|
|
})
|
|
.def("param_node", [](Graph& g) { return g.block()->param_node(); })
|
|
.def("return_node", [](Graph& g) { return g.block()->return_node(); })
|
|
.def(
|
|
"createFusionGroup",
|
|
[](Graph& g) { return g.createWithSubgraph(prim::FusionGroup); })
|
|
.def(
|
|
"createCudaFusionGroup",
|
|
[](Graph& g) { return g.createWithSubgraph(prim::CudaFusionGroup); })
|
|
.def(
|
|
"createClone",
|
|
[](Graph& g, Node* n, py::object fn) {
|
|
return g.createClone(
|
|
n, [&](Value* e) { return fn(e).cast<Value*>(); });
|
|
})
|
|
.GS(appendNode)
|
|
.GS(prependNode)
|
|
.def(
|
|
"insertConstant",
|
|
[](Graph& g, const IValue& ival) { return g.insertConstant(ival); })
|
|
.GS(lint)
|
|
.GS(insertNode);
|
|
#undef GS
|
|
|
|
#define VS(name) def(#name, &Value ::name)
|
|
py::class_<Value, unwrapping_shared_ptr<Value>>(m, "Value")
|
|
.def(
|
|
"__repr__",
|
|
[](Value& n) {
|
|
std::stringstream ss;
|
|
ss << n.debugName() << " defined in (" << *n.node() << ")";
|
|
return ss.str();
|
|
})
|
|
.VS(type)
|
|
.VS(setType)
|
|
.def(
|
|
"inferTypeFrom",
|
|
py::overload_cast<const at::Tensor&>(&Value::inferTypeFrom))
|
|
.def(
|
|
"inferTypeFrom",
|
|
py::overload_cast<const c10::intrusive_ptr<c10::ivalue::Object>&>(
|
|
&Value::inferTypeFrom))
|
|
// skip owningGraph because it returns a raw pointer to a otherwise
|
|
// std::shared_ptr stored graph object, and would cause a double free
|
|
.VS(unique)
|
|
.VS(debugName)
|
|
.VS(setDebugName)
|
|
.VS(offset)
|
|
.VS(uses)
|
|
.VS(replaceAllUsesWith)
|
|
.VS(replaceAllUsesAfterNodeWith)
|
|
.def("node", [](Value& v) { return v.node(); })
|
|
.def(
|
|
"setTypeAs",
|
|
[](Value* node, Value* other) {
|
|
node->setType(other->type());
|
|
return node;
|
|
})
|
|
.VS(copyMetadata)
|
|
.VS(isCompleteTensor)
|
|
.VS(requires_grad)
|
|
.def(
|
|
"requiresGrad",
|
|
[](Value& n) {
|
|
return n.type()->expectRef<TensorType>().requiresGrad();
|
|
})
|
|
.def("toIValue", [](Value& n) { return toIValue(&n); })
|
|
.def("type", [](Value& v) { return v.type(); });
|
|
#undef VS
|
|
|
|
py::class_<Block, unwrapping_shared_ptr<Block>>(m, "Block")
|
|
.def(
|
|
"nodes",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.nodes().begin(), b.nodes().end());
|
|
})
|
|
.def(
|
|
"findNode",
|
|
[](Block& b, const std::string& kind, bool recurse) {
|
|
return findNode(&b, Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Block& b, const std::string& kind, bool recurse) {
|
|
return findAllNodes(&b, Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"inputs",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.inputs().begin(), b.inputs().end());
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Block& b) {
|
|
return py::make_iterator(b.outputs().begin(), b.outputs().end());
|
|
})
|
|
.def("returnNode", [](Block& b) { return b.return_node(); })
|
|
.def("paramNode", [](Block& b) { return b.param_node(); })
|
|
.def(
|
|
"addNode",
|
|
[](Block& b, const char* str, const std::vector<Value*>& inputs) {
|
|
return addNodeToBlock(&b, Symbol::fromQualString(str), inputs);
|
|
})
|
|
.def("addInputToBlock", [](Block& b) { return addInputToBlock(&b); })
|
|
.def("registerOutput", [](Block& b, Value* value) {
|
|
return b.registerOutput(value);
|
|
});
|
|
|
|
#define NS(name) def(#name, &Node ::name)
|
|
py::class_<Node, unwrapping_shared_ptr<Node>>(m, "Node")
|
|
.def(
|
|
"__repr__",
|
|
[](Node& n) {
|
|
std::stringstream ss;
|
|
ss << n;
|
|
return ss.str();
|
|
})
|
|
.def("sourceRange", [](Node& n) { return n.sourceRange().str(); })
|
|
.def("hasMultipleOutputs", [](Node& n) { return n.outputs().size() > 1; })
|
|
.def("inputsSize", [](Node& n) { return n.inputs().size(); })
|
|
.def("outputsSize", [](Node& n) { return n.outputs().size(); })
|
|
.NS(kind)
|
|
.def("inputsAt", [](Node& n, size_t i) { return n.inputs().at(i); })
|
|
.def(
|
|
"inputs",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.inputs().begin(), n.inputs().end());
|
|
})
|
|
.def(
|
|
"schema",
|
|
[](Node& n) {
|
|
std::stringstream ss;
|
|
if (auto sch = n.maybeSchema()) {
|
|
ss << n.schema();
|
|
} else {
|
|
ss << "(no schema)";
|
|
}
|
|
return ss.str();
|
|
})
|
|
.def(
|
|
"outputs",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.outputs().begin(), n.outputs().end());
|
|
})
|
|
.def("outputsAt", [](Node& n, size_t i) { return n.outputs().at(i); })
|
|
.def(
|
|
"findNode",
|
|
[](Node& n, const std::string& kind, bool recurse) {
|
|
return findNode(n.blocks(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find Node",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def(
|
|
"findAllNodes",
|
|
[](Node& n, const std::string& kind, bool recurse) {
|
|
return findAllNodes(
|
|
n.blocks(), Symbol::fromQualString(kind), recurse);
|
|
},
|
|
"Find all nodes",
|
|
py::arg("kind"),
|
|
py::arg("recurse") = true)
|
|
.def("input", [](Node& n) { return n.input(); })
|
|
.def("output", [](Node& n) { return n.output(); })
|
|
.def(
|
|
"getModuleHierarchy",
|
|
[](Node& n) { return torch::jit::utils::getNodesModuleHierarchy(n); })
|
|
.NS(addInput)
|
|
.NS(replaceInput)
|
|
.NS(replaceInputWith)
|
|
.NS(replaceAllUsesWith)
|
|
.NS(insertBefore)
|
|
.NS(insertAfter)
|
|
.NS(isBefore)
|
|
.NS(isAfter)
|
|
.NS(moveAfter)
|
|
.NS(moveBefore)
|
|
.NS(removeInput)
|
|
.NS(removeAllInputs)
|
|
.NS(destroy)
|
|
.NS(hasUses)
|
|
.NS(eraseOutput)
|
|
.NS(addOutput)
|
|
.NS(scopeName)
|
|
.NS(isNondeterministic)
|
|
.def(
|
|
"blocks",
|
|
[](Node& n) {
|
|
return py::make_iterator(n.blocks().begin(), n.blocks().end());
|
|
})
|
|
.NS(addBlock)
|
|
.NS(mustBeNone)
|
|
|
|
#define AS(name) def(#name, &Node::name)
|
|
// methods from Attributes
|
|
.AS(copyAttributes)
|
|
.AS(hasAttributes)
|
|
#undef AS
|
|
#define AS(name) def(#name, &Node::name##S)
|
|
// The default method names take Symbol, but the string conversion for
|
|
// Symbol you to qualify with attr::. This is not very user friendly
|
|
// for attributes, so expose the string variants instead.
|
|
.AS(hasAttribute)
|
|
.AS(kindOf)
|
|
.AS(removeAttribute)
|
|
.AS(attributeNames)
|
|
#undef AS
|
|
#define CREATE_ACCESSOR(Kind, method) \
|
|
def(#method "_", [](Node& n, const char* name, Kind##Attr::ValueType v) { \
|
|
return n.method##_(Symbol::attr(name), std::move(v)); \
|
|
}).def(#method, [](Node& n, const char* name) { \
|
|
return n.method(Symbol::attr(name)); \
|
|
})
|
|
.CREATE_ACCESSOR(Float, f)
|
|
.CREATE_ACCESSOR(Floats, fs)
|
|
.CREATE_ACCESSOR(Complex, c)
|
|
.CREATE_ACCESSOR(String, s)
|
|
.CREATE_ACCESSOR(Strings, ss)
|
|
.CREATE_ACCESSOR(Int, i)
|
|
.CREATE_ACCESSOR(Ints, is)
|
|
.CREATE_ACCESSOR(Graph, g)
|
|
.CREATE_ACCESSOR(Graphs, gs)
|
|
#undef CREATE_ACCESSOR
|
|
// Tensor (t_) -- manually written to unwrap the variable into a tensor.
|
|
.def(
|
|
"t_",
|
|
[](Node& n, const char* name, const torch::autograd::Variable& v) {
|
|
AT_ASSERT(!v.requires_grad());
|
|
return n.t_(Symbol::attr(name), v);
|
|
})
|
|
.def(
|
|
"t",
|
|
[](Node& n, const char* name) { return n.t(Symbol::attr(name)); })
|
|
// Tensors (ts_) -- manually written to unwrap variables into tensors.
|
|
.def(
|
|
"ts_",
|
|
[](Node& n,
|
|
const char* name,
|
|
const std::vector<torch::autograd::Variable>& vs) {
|
|
std::vector<at::Tensor> tensors;
|
|
tensors.reserve(vs.size());
|
|
for (auto& variable : vs) {
|
|
AT_ASSERT(!variable.requires_grad());
|
|
tensors.push_back(variable);
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(tensors));
|
|
})
|
|
.def(
|
|
"ts",
|
|
[](Node& n, const char* name) {
|
|
auto tensors = n.ts(Symbol::attr(name));
|
|
std::vector<torch::autograd::Variable> variables;
|
|
variables.reserve(tensors.size());
|
|
for (auto& tensor : tensors) {
|
|
variables.emplace_back(std::move(tensor));
|
|
}
|
|
return variables;
|
|
})
|
|
.def(
|
|
"z_",
|
|
[](Node& n, const char* name, const at::Tensor& v) {
|
|
return n.t_(
|
|
Symbol::attr(name),
|
|
autograd::Variable(v.view(std::vector<int64_t>{}))
|
|
.set_requires_grad(false));
|
|
})
|
|
.def(
|
|
"z",
|
|
[](Node& n, const char* name) { return n.t(Symbol::attr(name)); })
|
|
.def(
|
|
"zs_",
|
|
[](Node& n, const char* name, TensorsAttr::ValueType v) {
|
|
for (auto& i : v) {
|
|
i = autograd::Variable(i.view(std::vector<int64_t>{}))
|
|
.set_requires_grad(false);
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(v));
|
|
})
|
|
.def(
|
|
"zs",
|
|
[](Node& n, const char* name) { return n.ts(Symbol::attr(name)); })
|
|
.def(
|
|
"pyobj",
|
|
[](Node& n) {
|
|
return py::handle(n.expect<ConcretePythonOp>()->pyobj.get())
|
|
.cast<py::object>();
|
|
})
|
|
.def("cconv", [](Node& n) { return n.expect<ConcretePythonOp>()->cconv; })
|
|
.def(
|
|
"pyname",
|
|
[](Node& n) { return n.expect<ConcretePythonOp>()->name(); })
|
|
.def("scalar_args", [](Node& n) {
|
|
auto op = n.expect<ConcretePythonOp>();
|
|
auto scalars = py::list();
|
|
auto append = scalars.attr("append");
|
|
for (auto& arg : op->scalar_args) {
|
|
append(py::handle(arg.get()));
|
|
}
|
|
return scalars;
|
|
});
|
|
|
|
using ::c10::Type;
|
|
py::class_<Type, std::shared_ptr<Type>>(m, "Type")
|
|
.def("__repr__", [](Type& t) { return t.annotation_str(); })
|
|
.def(
|
|
"str",
|
|
[](Type& t) {
|
|
std::ostringstream s;
|
|
s << t;
|
|
return s.str();
|
|
})
|
|
.def("kind", [](const Type& t) { return typeKindToString(t.kind()); })
|
|
.def(
|
|
"dim",
|
|
[](Type& t) {
|
|
auto vshape = t.shared_from_this()->expectRef<TensorType>().sizes();
|
|
return vshape.size() ? py::cast(*vshape.size())
|
|
: py::cast<py::none>(Py_None);
|
|
})
|
|
.def(
|
|
"undefined",
|
|
[](Type& t) {
|
|
auto undef =
|
|
t.shared_from_this()->expectRef<TensorType>().undefined();
|
|
return undef.has_value() ? py::cast(*undef)
|
|
: py::cast<py::none>(Py_None);
|
|
})
|
|
.def(
|
|
"sizes",
|
|
[](Type& t) -> py::object {
|
|
if (auto ptt = t.expect<TensorType>()) {
|
|
if (auto cs = ptt->sizes().concrete_sizes()) {
|
|
return py::cast(*cs);
|
|
}
|
|
}
|
|
return py::none();
|
|
})
|
|
.def(
|
|
"symbolic_sizes",
|
|
[](Type& t) -> py::object {
|
|
if (auto ptt = t.expect<TensorType>()) {
|
|
auto ss = ptt->symbolic_sizes();
|
|
if (!ss.rank().has_value()) {
|
|
return py::none();
|
|
}
|
|
|
|
std::vector<int64_t> ss_vals;
|
|
for (size_t i = 0; i < *ss.rank(); ++i) {
|
|
ss_vals.push_back(ss.at(i).value());
|
|
}
|
|
return py::cast(ss_vals);
|
|
}
|
|
return py::none();
|
|
})
|
|
.def(
|
|
"with_sizes",
|
|
[](Type& t, c10::optional<std::vector<c10::optional<int64_t>>> sizes)
|
|
-> py::object {
|
|
auto ptt = t.expect<TensorType>();
|
|
if (!ptt) {
|
|
return py::none();
|
|
}
|
|
if (!sizes) {
|
|
return py::cast(ptt->withSymbolicShapes(c10::SymbolicShape()));
|
|
}
|
|
return py::cast(ptt->withSymbolicShapes(*sizes));
|
|
})
|
|
.def(
|
|
"varyingSizes",
|
|
[](Type& t) -> py::object {
|
|
if (auto ptt = t.expect<TensorType>()) {
|
|
if (auto s = ptt->sizes().sizes()) {
|
|
return py::cast(s.value());
|
|
}
|
|
}
|
|
return py::none();
|
|
})
|
|
.def(
|
|
"strides",
|
|
[](Type& t) -> py::object {
|
|
if (auto ptt = t.expect<TensorType>()) {
|
|
if (auto cs = ptt->strides().concrete_sizes()) {
|
|
return py::cast(*cs);
|
|
}
|
|
}
|
|
return py::none();
|
|
})
|
|
.def(
|
|
"contiguous",
|
|
[](Type& t) {
|
|
return std::static_pointer_cast<Type>(
|
|
t.expectRef<TensorType>().contiguous());
|
|
})
|
|
.def(
|
|
"scalarType",
|
|
[](Type& t) {
|
|
auto scalar_type =
|
|
t.shared_from_this()->expectRef<TensorType>().scalarType();
|
|
return (scalar_type) ? toString(*scalar_type) : nullptr;
|
|
})
|
|
.def(
|
|
"__eq__",
|
|
[](std::shared_ptr<Type>& self, std::shared_ptr<Type>& other) {
|
|
if (!other) {
|
|
return false;
|
|
}
|
|
return *self == *other;
|
|
})
|
|
.def(
|
|
"isSubtypeOf",
|
|
[](std::shared_ptr<Type>& self, std::shared_ptr<Type>& other) {
|
|
if (!other) {
|
|
return false;
|
|
}
|
|
return self->isSubtypeOf(other);
|
|
})
|
|
.def(
|
|
"is_interface_type",
|
|
[](const std::shared_ptr<Type>& self) {
|
|
return self->cast<InterfaceType>() != nullptr;
|
|
})
|
|
.def_property_readonly(
|
|
"annotation_str", [](const std::shared_ptr<Type>& self) {
|
|
return self->annotation_str();
|
|
});
|
|
|
|
py::class_<AnyType, Type, std::shared_ptr<AnyType>>(m, "AnyType")
|
|
.def_static("get", &AnyType::get);
|
|
py::class_<NumberType, Type, std::shared_ptr<NumberType>>(m, "NumberType")
|
|
.def_static("get", &NumberType::get);
|
|
py::class_<IntType, Type, std::shared_ptr<IntType>>(m, "IntType")
|
|
.def_static("get", &IntType::get);
|
|
py::class_<FloatType, Type, std::shared_ptr<FloatType>>(m, "FloatType")
|
|
.def_static("get", &FloatType::get);
|
|
py::class_<ComplexType, Type, std::shared_ptr<ComplexType>>(m, "ComplexType")
|
|
.def_static("get", &ComplexType::get);
|
|
py::class_<TensorType, Type, std::shared_ptr<TensorType>>(m, "TensorType")
|
|
.def_static("get", &TensorType::get)
|
|
.def_static("getInferred", &TensorType::getInferred);
|
|
py::class_<BoolType, Type, std::shared_ptr<BoolType>>(m, "BoolType")
|
|
.def_static("get", &BoolType::get);
|
|
py::class_<StringType, Type, std::shared_ptr<StringType>>(m, "StringType")
|
|
.def_static("get", &StringType::get);
|
|
py::class_<DeviceObjType, Type, std::shared_ptr<DeviceObjType>>(
|
|
m, "DeviceObjType")
|
|
.def_static("get", &DeviceObjType::get);
|
|
py::class_<StreamObjType, Type, std::shared_ptr<StreamObjType>>(
|
|
m, "StreamObjType")
|
|
.def_static("get", &StreamObjType::get);
|
|
py::class_<PyObjectType, Type, std::shared_ptr<PyObjectType>>(
|
|
m, "PyObjectType")
|
|
.def_static("get", &PyObjectType::get);
|
|
py::class_<NoneType, Type, std::shared_ptr<NoneType>>(m, "NoneType")
|
|
.def_static("get", &NoneType::get);
|
|
|
|
py::class_<TupleType, Type, std::shared_ptr<TupleType>>(m, "TupleType")
|
|
.def(py::init([](std::vector<TypePtr> a) {
|
|
return TupleType::create(std::move(a));
|
|
}))
|
|
.def("elements", [](TupleType& self) {
|
|
std::vector<TypePtr> types;
|
|
for (const auto& type : self.elements()) {
|
|
types.push_back(type);
|
|
}
|
|
return types;
|
|
});
|
|
py::class_<UnionType, Type, std::shared_ptr<UnionType>>(m, "UnionType")
|
|
.def(py::init(
|
|
[](const std::vector<TypePtr>& a) { return UnionType::create(a); }))
|
|
.def("containedTypes", [](UnionType& self) {
|
|
return self.containedTypes().vec();
|
|
});
|
|
py::class_<ListType, Type, std::shared_ptr<ListType>>(m, "ListType")
|
|
.def(py::init([](TypePtr a) { return ListType::create(a); }))
|
|
.def_static("ofInts", &ListType::ofInts)
|
|
.def_static("ofTensors", &ListType::ofTensors)
|
|
.def_static("ofFloats", &ListType::ofFloats)
|
|
.def_static("ofComplexDoubles", &ListType::ofComplexDoubles)
|
|
.def_static("ofBools", &ListType::ofBools)
|
|
.def("getElementType", &ListType::getElementType);
|
|
py::class_<DictType, Type, std::shared_ptr<DictType>>(m, "DictType")
|
|
.def(py::init([](TypePtr key, TypePtr value) {
|
|
return DictType::create(std::move(key), std::move(value));
|
|
}))
|
|
.def("getKeyType", &DictType::getKeyType)
|
|
.def("getValueType", &DictType::getValueType);
|
|
py::class_<OptionalType, Type, std::shared_ptr<OptionalType>>(
|
|
m, "OptionalType")
|
|
.def(py::init(
|
|
[](TypePtr a) { return OptionalType::create(std::move(a)); }))
|
|
.def_static("ofTensor", &OptionalType::ofTensor)
|
|
.def("getElementType", &OptionalType::getElementType);
|
|
py::class_<RRefType, Type, std::shared_ptr<RRefType>>(m, "RRefType")
|
|
.def(py::init([](TypePtr a) { return RRefType::create(std::move(a)); }))
|
|
.def("getElementType", &RRefType::getElementType);
|
|
|
|
py::class_<FutureType, Type, std::shared_ptr<FutureType>>(m, "FutureType")
|
|
.def(py::init([](TypePtr a) { return FutureType::create(std::move(a)); }))
|
|
.def("getElementType", &FutureType::getElementType);
|
|
|
|
py::class_<ClassType, Type, std::shared_ptr<ClassType>>(m, "ClassType")
|
|
.def(py::init([](const std::string& qualified_name) {
|
|
return get_python_cu()->get_class(c10::QualifiedName(qualified_name));
|
|
}))
|
|
.def("name", [](ClassType& self) { return self.name()->name(); })
|
|
.def("qualified_name", [](ClassType& self) {
|
|
return self.name()->qualifiedName();
|
|
});
|
|
py::class_<EnumType, Type, std::shared_ptr<EnumType>>(m, "EnumType")
|
|
.def(py::init([](const std::string& qualified_name,
|
|
TypePtr value_type,
|
|
const std::vector<py::object>& enum_names_values) {
|
|
std::vector<std::pair<std::string, IValue>> names_values;
|
|
names_values.reserve(enum_names_values.size());
|
|
for (const auto& enum_name_value : enum_names_values) {
|
|
auto enum_name = py::cast<std::string>(enum_name_value.attr("name"));
|
|
auto enum_value = toIValue(enum_name_value.attr("value"), value_type);
|
|
names_values.emplace_back(std::make_pair(enum_name, enum_value));
|
|
}
|
|
return EnumType::create(
|
|
c10::QualifiedName(qualified_name),
|
|
std::move(value_type),
|
|
std::move(names_values),
|
|
get_python_cu());
|
|
}));
|
|
py::class_<InterfaceType, Type, std::shared_ptr<InterfaceType>>(
|
|
m, "InterfaceType")
|
|
.def(py::init([](const std::string& qualified_name) {
|
|
return get_python_cu()->get_interface(
|
|
c10::QualifiedName(qualified_name));
|
|
}))
|
|
.def(
|
|
"getMethod",
|
|
[](InterfaceType& self, const std::string& name) {
|
|
return self.getMethod(name);
|
|
},
|
|
py::return_value_policy::reference)
|
|
.def("getMethodNames", [](InterfaceType& self) {
|
|
std::vector<std::string> names;
|
|
for (const FunctionSchema& fn : self.methods()) {
|
|
names.emplace_back(fn.name());
|
|
}
|
|
return names;
|
|
});
|
|
using ::c10::InferredType;
|
|
py::class_<InferredType, std::shared_ptr<InferredType>>(m, "InferredType")
|
|
.def(py::init([](std::shared_ptr<Type> type) {
|
|
return std::make_shared<InferredType>(std::move(type));
|
|
}))
|
|
.def(py::init([](std::string reason) {
|
|
return std::make_shared<InferredType>(std::move(reason));
|
|
}))
|
|
.def(
|
|
"type",
|
|
[](const std::shared_ptr<InferredType>& self) {
|
|
return self->type();
|
|
})
|
|
.def(
|
|
"success",
|
|
[](const std::shared_ptr<InferredType>& self) {
|
|
return self->success();
|
|
})
|
|
.def("reason", [](const std::shared_ptr<InferredType>& self) {
|
|
return self->reason();
|
|
});
|
|
|
|
py::class_<Use>(m, "Use")
|
|
.def_readonly("user", &Use::user)
|
|
.def_readonly("offset", &Use::offset)
|
|
.def("isAfter", [](Use& self, Use& other_use) {
|
|
return isBeforeOrAfter(self, other_use, false);
|
|
});
|
|
}
|
|
} // namespace jit
|
|
} // namespace torch
|