pytorch/torch/_dynamo/pgo.py

738 lines
26 KiB
Python

from __future__ import annotations
import base64
import copy
import dataclasses
import enum
import logging
import os
import pickle
from collections import defaultdict
from typing import DefaultDict, Optional, TYPE_CHECKING, TypeVar, Union
from typing_extensions import Self
import torch._dynamo.config
import torch._utils_internal
import torch.compiler.config
import torch.distributed as dist
from torch._dynamo.utils import (
CompileEventLogger,
dynamo_timed,
set_feature_use,
warn_once,
)
from torch._environment import is_fbcode
from torch._logging._internal import trace_structured_artifact
from torch.compiler._cache import CacheArtifactManager, CacheArtifactType
if TYPE_CHECKING:
import types
from torch._dynamo.symbolic_convert import InstructionTranslator
from torch._inductor.remote_cache import JsonDataTy, RemoteCache
class ReservedWorkflowIdUserError(ValueError):
pass
log = logging.getLogger(__name__)
LOCK_TIMEOUT = 10
# How does in memory representation work? Concretely, this module is
# responsible for holding GLOBAL state representing the state it holds, no
# other copies permitted. So we retire frame_state entirely and store it
# here. This should be reset when Dynamo is reset. We never GC information
# (similar to how the filesystem doesn't get cleaned up except by tmp
# cleaner), so the expectation is the information is relatively cheap and we
# don't mind leaking it.
# How exactly did we design the cache key? Here are some of the questions:
#
# - JOB_ID: Do we have a unique identifier for the "training run" (such that
# it stays the same if we're running the same code, and changes if we're
# running something different).
#
# - RANK: Are we sharing the cache across ranks, or does each rank get
# an individual cache?
#
# We choose to require job_id for PGO cache. This is to prevent
# situations where unrelated invocations of PyTorch unpredictably cause
# changes to each other's behavior. With a job_id, at least you know there
# is some "state" associated with it. (State dict might be another way to
# tell if a run is related or not.) You can opt-in to YOLO everything
# aliases everything by passing a shared job_id for all your invocations.
#
# We choose to NOT share PGO cache across ranks. With no RANK_SHARING, there
# is never contention between runs, so we can leisurely update a bundle with
# information we need. Because we are grouped by job_id, we can have a single
# consolidated bundle for everything (or not; maybe worry about O(n^2) IO if
# we updated every compile--let's just instrument this.) Can even take a
# filelock for extra safety (expect no contention); expect 50ns overhead from
# uncontended filelock.
#
# If we did share ranks, everyone is storming to modify the same cache files.
# We can do this by having folks atomic write to a CAS-store and then having
# readers do on-the-fly merging (this can be implemented in remote using
# prefix iteration). As an optional optimization, one rank can be elected to
# handling bundling post facto (ideally, this is done async, after quiescence,
# without compiler collective need to wait for everyone to finish writing
# their bits.) Not sure how you can avoid a listdir because if some rank shows
# up with some new entries we need to pull them in ASAP (unless you want to
# delay bundling).
#
# But compiler collectives fill a similar niche: compilers chat with each
# other so rank 0 has collected everything. So elect rank 0 only to write the
# bundle. Don't even need CAS-store atomic write; just one rank writing an
# updating bundles. The point is that use compiler collectives to share
# profiles across ranks, but use the PGO cache to persist profiles per rank
# across attempts. No need to have one mechanism to do everything.
@dataclasses.dataclass(frozen=True)
class CodeId:
filename: str
firstlineno: int
name: str
@staticmethod
def make(code: types.CodeType) -> CodeId:
return CodeId(code.co_filename, code.co_firstlineno, code.co_name)
@dataclasses.dataclass
class CodeState:
automatic_dynamic: DefaultDict[str, FrameStateSizeEntry] = dataclasses.field(
default_factory=lambda: defaultdict(FrameStateSizeEntry)
)
_INIT_CODE_STATE: Optional[DefaultDict[CodeId, CodeState]] = None
_CODE_STATE: Optional[DefaultDict[CodeId, CodeState]] = None
@dataclasses.dataclass(frozen=True)
class InferStride:
"""
Denotes the quantity stride[dim] * size[dim], which is what the stride would
be for the next physical dimension that results in a contiguous layout.
For example, given size = [2, 3], stride = [3, 1], we can replace this with
stride = [InferStride(1), 1], because InferStride(1) = stride[1] * size[1] = 1 * 3 = 3
Indirecting the representation in this way is important for the join operation
on strides as if we join [2, 3][3, 1] and [2, 4][4, 1],
we don't want [2, None][None, 1] which would get eventually symbolized into
[2, s0][s1, 1] (notice that the relationship between s0 and s1 is broken).
If we instead rewrite the expressions as InferStride so we have [2, 3][InferStride(1), 1]
and [2, 4][InferStride(1), 1] we now join to [2, None][InferStride(1), 1] will
result in [2, s0][s0, 1], as desired.
"""
dim: int
_T = TypeVar("_T")
class AutoUnset(enum.Enum):
"""
The identity element of our semilattice, a generic "don't know" element that
is always subsumed when we get more information.
"""
token = 0
auto_unset = AutoUnset.token
class AutoDynamic(enum.Enum):
"""
The top element of our (bounded) semilattice, whenever you merge this with
any other element you always get it again
"""
token = 0
auto_dynamic = AutoDynamic.token
@dataclasses.dataclass
class FrameStateSizeEntry:
scalar: Union[int, AutoDynamic, AutoUnset] = dataclasses.field(default=auto_unset)
# NB: We don't have cases where we have a known dimensionality but
# we know NOTHING about the individual sizes
size: Union[
AutoDynamic, AutoUnset, tuple[Union[int, AutoDynamic], ...]
] = dataclasses.field(default=auto_unset)
stride: Union[
AutoDynamic, AutoUnset, tuple[Union[int, AutoDynamic, InferStride], ...]
] = dataclasses.field(default=auto_unset)
def render(self) -> str:
# Special cases
def render_single(s: Union[int, AutoDynamic, AutoUnset, InferStride]) -> str:
if s is auto_dynamic:
return "?"
elif s is auto_unset:
# This basically shouldn't happen, this is for debugging
return "auto unset"
elif isinstance(s, InferStride):
return f"S({s.dim})"
else:
return str(s)
def render_tuple(ss: tuple[Union[int, AutoDynamic, InferStride], ...]) -> str:
return "[" + ", ".join(render_single(s) for s in ss) + "]"
# Common cases
if self.size is auto_dynamic and self.stride is auto_dynamic:
if self.scalar is auto_dynamic:
return "fully dynamic scalar or tensor"
else:
return f"scalar {self.scalar}"
elif self.scalar is auto_dynamic:
if isinstance(self.size, tuple) and isinstance(self.stride, tuple):
return f"tensor size={render_tuple(self.size)} stride={render_tuple(self.stride)}"
# Fallback
return "unusual {repr(self)}"
def __post_init__(self) -> None:
assert not isinstance(self.scalar, torch.SymInt), self.scalar
if isinstance(self.size, tuple):
for s in self.size:
assert not isinstance(s, torch.SymInt), s
if isinstance(self.stride, tuple):
for s1 in self.stride:
assert not isinstance(s1, torch.SymInt), s1
def is_size_dynamic(self, dim: int) -> bool:
if self.size is auto_dynamic:
return True
if self.size is auto_unset:
return False
return self.size[dim] is auto_dynamic
def is_stride_dynamic(self, dim: int) -> bool:
# At the moment, dynamic strides is a bit buggy. Good test case
# here is `PYTORCH_TEST_WITH_DYNAMO=1 python test/test_autograd.py
# TestAutograd.test_gradcheck_jacobian_mismatch`
#
# This if statement preserves historical behavior, which is that we
# ONLY make strides dynamic if the size is exactly static everywhere.
# We could potentially relax this but in general we should be very
# careful about when to infer dynamic strides.
#
# Actually, the existing algorithm is already somewhat problematic.
# Suppose a tensor that is sometimes:
# f32[2, 3, 5][15, 5, 1] and other times
# f32[2, 3, 5][5, 10, 1] (specifically, dim 0 and 1 are physically transposed).
# If we infer strides should be (DYNAMIC, DYNAMIC, 1). But this is
# silly: we really should have just guarded on dim order.
if not (
isinstance(self.size, tuple) and all(type(s) is int for s in self.size)
):
return False
if self.stride is auto_dynamic:
return True
if self.stride is auto_unset:
return False
return self.stride[dim] is auto_dynamic
@staticmethod
def _munge_symint(xs: tuple[int, ...]) -> tuple[Union[AutoDynamic, int], ...]:
return tuple(auto_dynamic if isinstance(x, torch.SymInt) else x for x in xs)
@classmethod
def make_scalar(cls, x: int) -> FrameStateSizeEntry:
return FrameStateSizeEntry(scalar=x, size=auto_dynamic, stride=auto_dynamic)
@classmethod
def make_tensor(
cls, size: tuple[int, ...], stride: tuple[int, ...]
) -> FrameStateSizeEntry:
return FrameStateSizeEntry(
scalar=auto_dynamic,
size=cls._munge_symint(size),
stride=cls._munge_symint(stride),
)
@classmethod
def make_size(cls, size: tuple[int, ...]) -> FrameStateSizeEntry:
return FrameStateSizeEntry(
scalar=auto_unset,
size=cls._munge_symint(size),
stride=auto_unset,
)
@staticmethod
def _merge_atom(x: _T, y: _T) -> Union[AutoDynamic, _T]:
if x is auto_unset:
return y
if y is auto_unset:
return x
if x is auto_dynamic or y is auto_dynamic or x != y:
return auto_dynamic
return x
@classmethod
def _merge_atom_tup(
cls,
xs: Union[AutoDynamic, AutoUnset, tuple[_T, ...]],
ys: Union[AutoDynamic, AutoUnset, tuple[_T, ...]],
) -> Union[AutoDynamic, AutoUnset, tuple[Union[AutoDynamic, _T], ...]]:
if xs is auto_unset:
return ys
if ys is auto_unset:
return xs
if xs is auto_dynamic or ys is auto_dynamic:
return auto_dynamic
if len(xs) != len(ys):
return auto_dynamic
return tuple(cls._merge_atom(x, y) for x, y in zip(xs, ys))
def __ior__(self, other: Self) -> Self:
self.scalar = self._merge_atom(self.scalar, other.scalar)
self.size = self._merge_atom_tup(self.size, other.size)
self.stride = self._merge_atom_tup(self.stride, other.stride)
return self
def update_automatic_dynamic(
tx: InstructionTranslator,
name: str,
entry: FrameStateSizeEntry,
*,
is_unspecialized_nn_module: bool = False,
) -> FrameStateSizeEntry:
code_id = CodeId.make(tx.f_code)
frame_state = get_code_state()[code_id]
is_update = name in frame_state.automatic_dynamic
mut_entry = frame_state.automatic_dynamic[name]
old_entry = copy.copy(mut_entry)
mut_entry |= entry
# Do some logs (damn, I spend more code logging than I do actually doing
# the updates lol)
if is_update and old_entry.scalar != mut_entry.scalar:
log.debug(
"automatic dynamic int %s val %s != %s",
name,
entry.scalar,
old_entry.scalar,
)
CompileEventLogger.instant(
"automatic_dynamic",
{
"name": name,
"dim_changed": "scalar",
"reason": "scalar change",
"cached": str(old_entry.scalar),
"new": str(entry.scalar),
},
)
if is_unspecialized_nn_module:
log.info(
"%s is converted to a symbolic integer. It is an attribute of a "
"user defined nn module class. If you wish to keep it static, you can "
"mark the nn module class as `torch._dynamo.mark_static`.",
name,
)
def log_tup(
tup_name: str, short_reason: str, long_reason: str, i: Optional[int] = None
) -> None:
entry_tup = (
getattr(entry, tup_name) if i is None else getattr(entry, tup_name)[i]
)
old_entry_tup = (
getattr(old_entry, tup_name)
if i is None
else getattr(old_entry, tup_name)[i]
)
log.debug(
"automatic dynamic %s %s %s %s != %s",
tup_name,
name,
short_reason,
# NB: We used to only report len(...) here for dim mismatch
entry_tup,
old_entry_tup,
)
CompileEventLogger.instant(
"automatic_dynamic",
{
"name": name,
"dim_changed": "all" if i is None else i,
"reason": long_reason,
"cached": str(old_entry_tup),
"new": str(entry_tup),
},
)
if is_update and old_entry.size != mut_entry.size:
if isinstance(old_entry.size, tuple) and isinstance(entry.size, tuple):
if len(old_entry.size) != len(entry.size):
log_tup("size", "dim", "dimensionality change")
else:
for i in range(len(entry.size)):
if old_entry.size[i] != entry.size[i]:
log_tup("size", f"size({i})", "size change", i)
else:
log_tup("size", "other", "other")
if is_update and old_entry.stride != mut_entry.stride:
if isinstance(old_entry.stride, tuple) and isinstance(entry.stride, tuple):
if len(old_entry.stride) != len(entry.stride):
log_tup("stride", "dim", "dimensionality change")
else:
for i in range(len(entry.stride)):
if old_entry.stride[i] != entry.stride[i]:
log_tup("stride", f"stride({i})", "stride change", i)
else:
log_tup("stride", "other", "other")
return mut_entry
def process_automatic_dynamic(
tx: InstructionTranslator,
name: str,
entry: FrameStateSizeEntry,
*,
is_unspecialized_nn_module: bool = False,
) -> FrameStateSizeEntry:
if (st := tx.distributed_state) is None:
return update_automatic_dynamic(
tx,
name,
entry,
is_unspecialized_nn_module=is_unspecialized_nn_module,
)
elif st.all_states is None:
# Preflight, always pretend as if it's static. The point here
# is we want to get through the preflight quickly, and static
# will run faster. The preexisting frame state will get
# applied anyway after we do compiler collectives.
# TODO: I'm not sure if we should just bong the entire pgo
# state here, it kind of depends if we're going to have other
# things that talk in compiler collective. Also, the PGO
# state, if we've already inferred something is automatic
# dynamic, will have lost the actual input sizes, which might
# be useful for debugging purposes (e.g., observing 0/1
# specialization). Bonging the entire PGO state here would
# let us delete this logic here; the compiler collective
# would just directly update_automatic_dynamic
st.local_state.automatic_dynamic[name] = entry
return entry
else:
# Apply the updates. NB: all_states includes the local state
# too.
res = None
for sub_state in st.all_states:
if name in sub_state.automatic_dynamic:
res = update_automatic_dynamic(
tx,
name,
sub_state.automatic_dynamic[name],
is_unspecialized_nn_module=is_unspecialized_nn_module,
)
assert res is not None
return res
def get_cache_key() -> Optional[str]:
# TODO: info versions of these logs that log only once
if torch._inductor.config.force_disable_caches:
warn_once(
"dynamo_pgo force disabled by torch._inductor.config.force_disable_caches"
)
return None
# NB: We always use global rank for keys, even though they are overkill
# for local only cache
rank = None
if dist.is_available() and dist.is_initialized():
rank = dist.get_rank()
tag = torch.compiler.config.cache_key_tag
# NB: We namespace the cache keys so that only user-specified job id
# can alias with each other.
if (r := torch.compiler.config.job_id) is not None:
if r.startswith("mast:"):
raise ReservedWorkflowIdUserError(
"torch.compiler.config.job_id with prefix 'mast:' is reserved for "
"automatically generated job id associated with a specific MAST job "
"name and version."
)
return f"{r}:{rank}:{tag}"
if (name_version := torch._utils_internal.get_mast_job_name_version()) is not None:
mast_job_name, mast_job_version = name_version
return f"mast:{mast_job_name}:{mast_job_version}:{rank}:{tag}"
return None
# This solely controls local PGO
def code_state_path(cache_key: str) -> Optional[str]:
if not torch._dynamo.config.automatic_dynamic_local_pgo:
log.debug("automatic_dynamic_local_pgo not enabled")
return None
from torch._inductor.runtime.runtime_utils import cache_dir
return os.path.join(cache_dir(), "dynamo", f"code_state_{cache_key}.pkl")
def should_use_remote_dynamo_pgo_cache() -> bool:
if torch._inductor.config.force_disable_caches:
return False
if (r := torch._dynamo.config.automatic_dynamic_remote_pgo) is not None:
return r
if not is_fbcode():
return False
if torch._utils_internal.is_fb_unit_test():
return False
try:
from torch._inductor.fb.remote_cache import REMOTE_CACHE_VERSION
except ModuleNotFoundError:
return False
return REMOTE_CACHE_VERSION >= torch._utils_internal.justknobs_getval_int(
"pytorch/remote_cache:dynamo_pgo_version"
)
def get_remote_cache() -> Optional[RemoteCache[JsonDataTy]]:
from torch._inductor.remote_cache import create_cache
if not should_use_remote_dynamo_pgo_cache():
return None
return create_cache(
"dynamo-pgo",
is_fbcode(),
"FbRemoteDynamoPGOCache",
"RemoteDynamoPGOCache",
)
def render_code_state(cs: DefaultDict[CodeId, CodeState]) -> str:
return "\n".join(
f"{k.filename}:{k.firstlineno}:{k.name}:\n"
+ "\n".join(
f" {src}: {fs.render()}" for src, fs in v.automatic_dynamic.items()
)
for k, v in cs.items()
)
def get_code_state() -> DefaultDict[CodeId, CodeState]:
global _CODE_STATE, _INIT_CODE_STATE
if _CODE_STATE is not None:
return _CODE_STATE
# Initialize it (even if we don't look up profile)
_CODE_STATE = defaultdict(CodeState)
cache_key = get_cache_key()
if cache_key is None:
return _CODE_STATE
def hit(ty: str) -> DefaultDict[CodeId, CodeState]:
global _INIT_CODE_STATE
assert isinstance(_CODE_STATE, defaultdict)
log.info("get_code_state %s hit %s, %d entries", path, ty, len(_CODE_STATE))
trace_structured_artifact(
f"get_{ty}_code_state",
"string",
lambda: render_code_state(_CODE_STATE),
)
set_feature_use("pgo", True)
_INIT_CODE_STATE = copy.deepcopy(_CODE_STATE)
return _CODE_STATE
# Attempt local
path = code_state_path(cache_key)
if path is not None and os.path.exists(path):
with dynamo_timed(
name := "pgo.get_local_code_state", log_pt2_compile_event=True
):
CompileEventLogger.pt2_compile(name, cache_key=cache_key)
# Read lock not necessary as we always write atomically write to
# the actual location
with open(path, "rb") as f:
try:
content = f.read()
_CODE_STATE = pickle.loads(content)
CompileEventLogger.pt2_compile(name, cache_size_bytes=f.tell())
except Exception:
log.warning(
"get_code_state failed while reading %s", path, exc_info=True
)
else:
CacheArtifactManager.record_artifact(
CacheArtifactType.PGO, cache_key, content
)
return hit("local")
# Attempt remote
remote_cache = get_remote_cache()
if remote_cache is not None:
with dynamo_timed(
name := "pgo.get_remote_code_state", log_pt2_compile_event=True
):
CompileEventLogger.pt2_compile(name, cache_key=cache_key)
# TODO: I don't really understand why there's a JSON container format
try:
cache_data = remote_cache.get(cache_key)
except Exception:
log.warning(
"get_code_state failed remote read on %s", cache_key, exc_info=True
)
else:
if cache_data is not None:
try:
assert isinstance(cache_data, dict)
data = cache_data["data"]
assert isinstance(data, str)
payload = base64.b64decode(data)
CompileEventLogger.pt2_compile(
name, cache_size_bytes=len(payload)
)
_CODE_STATE = pickle.loads(payload)
except Exception:
log.warning(
"get_code_state failed parsing remote result on %s",
cache_key,
exc_info=True,
)
else:
CacheArtifactManager.record_artifact(
CacheArtifactType.PGO, cache_key, payload
)
return hit("remote")
else:
log.info("get_code_state remote miss on %s", cache_key)
log.info("get_code_state using default")
assert _CODE_STATE is not None
return _CODE_STATE
def put_code_state() -> None:
if _CODE_STATE is None:
log.info("put_code_state: never initialized, will not write")
return
if _CODE_STATE == _INIT_CODE_STATE:
log.info("put_code_state: no change, skipping")
return
cache_key = get_cache_key()
if cache_key is None:
log.info("put_code_state: no cache key, skipping")
return
put_local_code_state(cache_key)
put_remote_code_state(cache_key)
def write_local_impl(cache_key: str, pickled_code: bytes) -> Optional[tuple[str, int]]:
path = code_state_path(cache_key)
if path is None:
return None
# If the user isn't misusing our API, we should have exclusive access to
# this directory. But it's not too hard
tmp_path = path + ".tmp"
lock_path = path + ".lock"
# We /mostly/ don't need the lock but the tmp file could be clobbered
# TODO: use a safe tempfile create to eliminate lock
from torch.utils._filelock import FileLock
os.makedirs(os.path.dirname(path), exist_ok=True)
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
with open(tmp_path, "wb") as f:
f.write(pickled_code)
size = f.tell()
os.rename(tmp_path, path)
return path, size
def put_local_code_state(cache_key: str) -> None:
with dynamo_timed(name := "pgo.put_local_code_state", log_pt2_compile_event=True):
CompileEventLogger.pt2_compile(name, cache_key=cache_key)
assert _CODE_STATE is not None
pickled_code = pickle.dumps(_CODE_STATE)
CacheArtifactManager.record_artifact(
CacheArtifactType.PGO, cache_key, pickled_code
)
meta = write_local_impl(cache_key, pickled_code)
if meta is None:
log.info("put_code_state: local cache disabled")
return
path, size = meta
CompileEventLogger.pt2_compile(name, cache_size_bytes=size)
log.info("put_code_state: wrote local %s, %d entries", path, len(_CODE_STATE))
trace_structured_artifact(
"put_local_code_state",
"string",
lambda: render_code_state(_CODE_STATE),
)
def put_remote_code_state(cache_key: str) -> None:
with dynamo_timed(name := "pgo.put_remote_code_state", log_pt2_compile_event=True):
CompileEventLogger.pt2_compile(name, cache_key=cache_key)
assert _CODE_STATE is not None
remote_cache = get_remote_cache()
if remote_cache is None:
log.info("put_code_state: remote cache disabled")
return
content = pickle.dumps(_CODE_STATE)
CompileEventLogger.pt2_compile(name, cache_size_bytes=len(content))
cache_data: JsonDataTy = {
"data": base64.b64encode(content).decode("ascii"),
}
remote_cache.put(cache_key, cache_data)
log.info(
"put_code_state: wrote remote %s, %d entries", cache_key, len(_CODE_STATE)
)
# TODO: don't log this multiple times
trace_structured_artifact(
"put_remote_code_state",
"string",
lambda: render_code_state(_CODE_STATE),
)
# NB: this does NOT reset the cached code state on disk
def reset_code_state() -> None:
global _CODE_STATE, _INIT_CODE_STATE
_CODE_STATE = None
_INIT_CODE_STATE = None