pytorch/test/cpp/api/optim.cpp
Peter Goldsborough 1f36caceb2
[C++ API] Rework optimization package (#8815)
* Rework optim folder

* Removed TORCH_OPTIMIZER_CLASS macro

* Got rid of CRTP/Impl

* Removed TORCH_AUTOGRAD_KWARG

* Differentiate between Optimizer and LossClosureOptimizer

* Make Optimizers parameters based instead of model based

* Allow construction of optimizer from arbitrary vector

* Added test for zero grad

* Added test for external parameter vectors

* Now comparing against baseline values

* Documentation

* Post rebase fixes

* Different strategy for creating and accessing buffers in optimizers

* Fix member ordering
2018-06-26 10:13:14 -07:00

234 lines
6.7 KiB
C++

#include <catch.hpp>
#include <torch/nn/module.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/sequential.h>
#include <torch/optim.h>
#include <torch/tensor.h>
#include <torch/utils.h>
#include <test/cpp/api/optim_baseline.h>
#include <test/cpp/api/util.h>
#include <cmath>
#include <cstdlib>
#include <functional>
#include <iostream>
#include <memory>
#include <random>
#include <vector>
using namespace torch::nn;
using namespace torch::optim;
bool test_optimizer_xor(Optimizer&& optimizer, Sequential& model) {
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
int64_t bs = 4;
auto inp = torch::empty({bs, 2});
auto lab = torch::empty({bs});
for (size_t i = 0; i < bs; i++) {
const int64_t a = std::rand() % 2;
const int64_t b = std::rand() % 2;
const int64_t c = static_cast<uint64_t>(a) ^ static_cast<uint64_t>(b);
inp[i][0] = a;
inp[i][1] = b;
lab[i] = c;
}
inp.set_requires_grad(true);
optimizer.zero_grad();
auto x = model.forward(inp);
torch::Tensor loss = at::binary_cross_entropy(x, lab);
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.toCFloat() * 0.01;
if (epoch > 3000) {
return false;
}
epoch++;
}
return true;
}
template <typename OptimizerClass, typename Options>
void check_exact_values(
Options options,
std::vector<std::vector<at::Tensor>> expected_parameters) {
const size_t kIterations = 1001;
const size_t kSampleEvery = 100;
torch::manual_seed(0);
Sequential model(
torch::SigmoidLinear(Linear(2, 3)), torch::SigmoidLinear(Linear(3, 1)));
model.to(torch::kFloat64);
// Use exact input values because matching random values is hard.
auto parameters = model.parameters();
parameters.at("0.linear.weight").data().flatten() = at::tensor(
{-0.2109, -0.4976, -0.1413, -0.3420, -0.2524, 0.6976}, torch::kFloat64);
parameters.at("0.linear.bias").data() =
at::tensor({-0.1085, -0.2979, 0.6892}, torch::kFloat64);
parameters.at("1.linear.weight").data().flatten() =
at::tensor({-0.0508, -0.3941, -0.2843}, torch::kFloat64);
parameters.at("1.linear.bias").data() =
at::tensor({-0.0711}, torch::kFloat64);
auto optimizer = OptimizerClass(parameters, options);
auto input = at::tensor({0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, torch::kFloat64)
.reshape({3, 2});
for (size_t i = 0; i < kIterations; ++i) {
optimizer.zero_grad();
auto output = model.forward(torch::autograd::make_variable(input));
auto loss = output.sum();
loss.backward();
optimizer.step();
if (i % kSampleEvery == 0) {
REQUIRE(
expected_parameters.at(i / kSampleEvery).size() == parameters.size());
for (size_t p = 0; p < parameters.size(); ++p) {
REQUIRE(parameters.at(p)->defined());
auto computed = parameters.at(p)->data().flatten();
auto expected = expected_parameters.at(i / kSampleEvery).at(p);
if (!computed.allclose(expected, /*rtol=*/1e-3, /*atol=*/1e-5)) {
std::cout << "Iteration " << i << ": " << computed
<< " != " << expected << " (parameter " << p << ")"
<< std::endl;
REQUIRE(false);
}
}
}
}
}
TEST_CASE("Optim/XORConvergence") {
std::srand(0);
torch::manual_seed(0);
Sequential model(
torch::SigmoidLinear(Linear(2, 8)), torch::SigmoidLinear(Linear(8, 1)));
SECTION("sgd") {
REQUIRE(test_optimizer_xor(
SGD(model.parameters(),
SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(1e-6)),
model));
}
// // Flaky
SECTION("lbfgs") {
auto optimizer = LBFGS(model.parameters(), LBFGSOptions(5e-2).max_iter(5));
// REQUIRE(test_optimizer_xor(optimizer, model));
}
SECTION("adagrad") {
REQUIRE(test_optimizer_xor(
Adagrad(
model.parameters(),
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3)),
model));
}
SECTION("rmsprop_simple") {
REQUIRE(test_optimizer_xor(
RMSprop(model.parameters(), RMSpropOptions(1e-1).centered(true)),
model));
}
SECTION("rmsprop") {
REQUIRE(test_optimizer_xor(
RMSprop(
model.parameters(),
RMSpropOptions(1e-1).momentum(0.9).weight_decay(1e-6)),
model));
}
// This test appears to be flaky, see
// https://github.com/pytorch/pytorch/issues/7288
SECTION("adam") {
REQUIRE(test_optimizer_xor(
Adam(model.parameters(), AdamOptions(1.0).weight_decay(1e-6)), model));
}
SECTION("amsgrad") {
REQUIRE(test_optimizer_xor(
Adam(
model.parameters(),
AdamOptions(0.1).weight_decay(1e-6).amsgrad(true)),
model));
}
}
TEST_CASE("Optim/ProducesPyTorchValues/Adam") {
check_exact_values<Adam>(
AdamOptions(1.0).weight_decay(1e-6), expected_parameters::Adam);
}
TEST_CASE("Optim/ProducesPyTorchValues/Adagrad") {
check_exact_values<Adagrad>(
AdagradOptions(1.0).weight_decay(1e-6).lr_decay(1e-3),
expected_parameters::Adagrad);
}
TEST_CASE("Optim/ProducesPyTorchValues/RMSprop") {
check_exact_values<RMSprop>(
RMSpropOptions(1e-1).momentum(0.9).weight_decay(1e-6),
expected_parameters::RMSprop);
}
TEST_CASE("Optim/ProducesPyTorchValues/SGD") {
check_exact_values<SGD>(
SGDOptions(1e-1).momentum(0.9).weight_decay(1e-6),
expected_parameters::SGD);
}
TEST_CASE("Optim/ZeroGrad") {
Linear model(2, 8);
SGD optimizer(model->parameters(), 0.1);
for (const auto& parameter : model->parameters()) {
REQUIRE(!parameter->grad().defined());
}
auto output = model->forward({torch::ones({5, 2})}).front();
auto loss = output.sum();
loss.backward();
for (const auto& parameter : model->parameters()) {
REQUIRE(parameter->grad().defined());
REQUIRE(parameter->grad().sum().toCFloat() > 0);
}
optimizer.zero_grad();
for (const auto& parameter : model->parameters()) {
REQUIRE(parameter->grad().defined());
REQUIRE(parameter->grad().sum().toCFloat() == 0);
}
}
TEST_CASE("Optim/ExternalVectorOfParameters") {
std::vector<torch::Tensor> parameters = {
torch::randn({2, 2}), torch::randn({3, 3}), torch::randn({4, 4})};
std::vector<torch::Tensor> original_parameters = {
parameters[0].clone(), parameters[1].clone(), parameters[2].clone()};
// Set all gradients to one
for (auto& parameter : parameters) {
parameter.grad() = torch::ones_like(parameter);
}
SGD optimizer(parameters, 1.0);
optimizer.step();
REQUIRE(parameters[0].allclose(original_parameters[0] - 1.0));
REQUIRE(parameters[1].allclose(original_parameters[1] - 1.0));
REQUIRE(parameters[2].allclose(original_parameters[2] - 1.0));
}