mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Differential Revision: [D71006269](https://our.internmc.facebook.com/intern/diff/D71006269/) I want to make sure the benchmark even if failed on some experiment can still print most of the results. ``` Experiment group: mm (3x3, 3x3) torch.bfloat16 +-----------------------+-------------------+----------------------+---------------------+ | name | forward_time (us) | compilation_time (s) | perf_over_aten (%) | +-----------------------+-------------------+----------------------+---------------------+ | aten | 6.175220478326082 | 0.5982149520423263 | NA | | triton | 5.326753947883844 | 3.2067150759976357 | -13.739858089605114 | | triton_persistent_tma | 5.340870004147291 | 3.279932268196717 | -13.51126615004617 | | cutlass_lvl_default | inf | inf | inf | | cutlass_lvl_1111 | inf | inf | inf | | cutlass_lvl_2222 | inf | inf | inf | | cutlass_lvl_3333 | inf | inf | inf | +-----------------------+-------------------+----------------------+---------------------+ ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/149015 Approved by: https://github.com/chenyang78, https://github.com/jingsh |
||
|---|---|---|
| .. | ||
| distributed | ||
| dynamo | ||
| fastrnns | ||
| framework_overhead_benchmark | ||
| functional_autograd_benchmark | ||
| fuser | ||
| gpt_fast | ||
| inductor_backends | ||
| inference | ||
| instruction_counts | ||
| nested | ||
| operator_benchmark | ||
| overrides_benchmark | ||
| profiler_benchmark | ||
| record_function_benchmark | ||
| serialization | ||
| sparse | ||
| static_runtime | ||
| tensorexpr | ||
| transformer | ||
| compare-fastrnn-results.py | ||
| compare.sh | ||
| README.md | ||
| upload_scribe.py | ||
PyTorch Benchmarks
This folder contains scripts that produce reproducible timings of various PyTorch features.
It also provides mechanisms to compare PyTorch with other frameworks.
Setup environment
Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:
# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch
# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop
# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"
Benchmark List
Please refer to each subfolder to discover each benchmark suite. Links are provided where descriptions exist: