pytorch/caffe2/python/test/gpu_context_test.py
Jeff Daily 1e05e5e0ae Correct #39759 for HIP. (#39801)
Summary:
Changes in PR https://github.com/pytorch/pytorch/issues/39759 broke HIP caffe2.
hipify for caffe2 renames CUDA to HIP; torch does not.
If caffe2 calls into torch, it needs to use CUDA-named functions.

CC ezyang xw285cornell sunway513 houseroad dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39801

Differential Revision: D21982493

Pulled By: xw285cornell

fbshipit-source-id: 8e88e0fb80c71f0342e23ef0214a42d5542bdc70
2020-06-12 10:34:28 -07:00

32 lines
1.2 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import torch
from caffe2.python import core, workspace
# This is a standalone test that doesn't use test_util as we're testing
# initialization and thus we should be the ones calling GlobalInit
@unittest.skipIf(not workspace.has_cuda_support,
"THC pool testing is obscure and doesn't work on HIP yet")
class TestGPUInit(unittest.TestCase):
def testTHCAllocator(self):
cuda_or_hip = 'hip' if workspace.has_hip_support else 'cuda'
flag = '--caffe2_{}_memory_pool=thc'.format(cuda_or_hip)
core.GlobalInit(['caffe2', flag])
# just run one operator
# it's importantant to not call anything here from Torch API
# even torch.cuda.memory_allocated would initialize CUDA context
workspace.RunOperatorOnce(core.CreateOperator(
'ConstantFill', [], ["x"], shape=[5, 5], value=1.0,
device_option=core.DeviceOption(workspace.GpuDeviceType)
))
# make sure we actually used THC allocator
self.assertGreater(torch.cuda.memory_allocated(), 0)
if __name__ == '__main__':
unittest.main()