mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
98 lines
3.0 KiB
C++
98 lines
3.0 KiB
C++
// Note(jiayq): the import_array function is done inside
|
|
// caffe2_python.cc. Read
|
|
// http://docs.scipy.org/doc/numpy-1.10.1/reference/c-api.array.html#miscellaneous
|
|
// for more details.
|
|
|
|
#define NO_IMPORT_ARRAY
|
|
|
|
#include "pybind_state.h"
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include "caffe2/core/common_cudnn.h"
|
|
#include "caffe2/core/context_gpu.h"
|
|
#include "caffe2/operators/operator_fallback_gpu.h"
|
|
|
|
namespace caffe2 {
|
|
namespace python {
|
|
|
|
REGISTER_CUDA_OPERATOR(Python, GPUFallbackOp<PythonOp<CPUContext, false>>);
|
|
REGISTER_CUDA_OPERATOR(
|
|
PythonGradient,
|
|
GPUFallbackOp<PythonGradientOp<CPUContext, false>>);
|
|
|
|
REGISTER_CUDA_OPERATOR(PythonDLPack, PythonOp<CUDAContext, true>);
|
|
REGISTER_CUDA_OPERATOR(
|
|
PythonDLPackGradient,
|
|
PythonGradientOp<CUDAContext, true>);
|
|
|
|
REGISTER_BLOB_FETCHER((TypeMeta::Id<TensorCUDA>()), TensorFetcher<CUDAContext>);
|
|
REGISTER_BLOB_FEEDER(CUDA, TensorFeeder<CUDAContext>);
|
|
|
|
namespace py = pybind11;
|
|
|
|
void addCUDAGlobalMethods(py::module& m) {
|
|
m.def("num_cuda_devices", &NumCudaDevices);
|
|
m.def("get_cuda_version", &CudaVersion);
|
|
m.def("get_cudnn_version", &cudnnCompiledVersion);
|
|
m.def("get_cuda_peer_access_pattern", []() {
|
|
std::vector<std::vector<bool>> pattern;
|
|
CAFFE_ENFORCE(caffe2::GetCudaPeerAccessPattern(&pattern));
|
|
return pattern;
|
|
});
|
|
m.def("get_device_properties", [](int deviceid) {
|
|
auto& prop = GetDeviceProperty(deviceid);
|
|
std::map<std::string, py::object> obj;
|
|
obj["name"] = py::cast(prop.name);
|
|
obj["major"] = py::cast(prop.major);
|
|
obj["minor"] = py::cast(prop.minor);
|
|
obj["totalGlobalMem"] = py::cast(prop.totalGlobalMem);
|
|
return obj;
|
|
});
|
|
};
|
|
|
|
void addCUDAObjectMethods(py::module& m) {
|
|
py::class_<DLPackWrapper<CUDAContext>>(m, "DLPackTensorCUDA")
|
|
.def_property_readonly(
|
|
"data",
|
|
[](DLPackWrapper<CUDAContext>* t) -> py::object {
|
|
CAFFE_ENFORCE_EQ(
|
|
t->device_option.device_type(),
|
|
CUDA,
|
|
"Expected CUDA device option for CUDA tensor");
|
|
|
|
return t->data();
|
|
},
|
|
"Return DLPack tensor with tensor's data.")
|
|
.def(
|
|
"feed",
|
|
[](DLPackWrapper<CUDAContext>* t, py::object obj) {
|
|
CAFFE_ENFORCE_EQ(
|
|
t->device_option.device_type(),
|
|
CUDA,
|
|
"Expected CUDA device option for CUDA tensor");
|
|
t->feed(obj);
|
|
},
|
|
"Copy data from given DLPack tensor into this tensor.")
|
|
.def_property_readonly(
|
|
"_shape",
|
|
[](const DLPackWrapper<CUDAContext>& t) { return t.tensor->dims(); })
|
|
.def(
|
|
"_reshape",
|
|
[](DLPackWrapper<CUDAContext>* t, std::vector<TIndex> dims) {
|
|
t->tensor->Resize(dims);
|
|
});
|
|
}
|
|
|
|
PYBIND11_MODULE(caffe2_pybind11_state_gpu, m) {
|
|
m.doc() = "pybind11 stateful interface to Caffe2 workspaces - GPU edition";
|
|
|
|
addGlobalMethods(m);
|
|
addCUDAGlobalMethods(m);
|
|
addObjectMethods(m);
|
|
addCUDAObjectMethods(m);
|
|
}
|
|
} // namespace python
|
|
} // namespace caffe2
|