mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
30 lines
1.0 KiB
Python
30 lines
1.0 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
from caffe2.python import core
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestConditionalOp(hu.HypothesisTestCase):
|
|
@given(rows_num=st.integers(1, 10000), **hu.gcs_cpu_only)
|
|
def test_conditional(self, rows_num, gc, dc):
|
|
op = core.CreateOperator(
|
|
"Conditional", ["condition", "data_t", "data_f"], "output"
|
|
)
|
|
data_t = np.random.random((rows_num, 10, 20)).astype(np.float32)
|
|
data_f = np.random.random((rows_num, 10, 20)).astype(np.float32)
|
|
condition = np.random.choice(a=[True, False], size=rows_num)
|
|
|
|
def ref(condition, data_t, data_f):
|
|
output = [
|
|
data_t[i] if condition[i] else data_f[i]
|
|
for i in range(rows_num)
|
|
]
|
|
return (output,)
|
|
|
|
self.assertReferenceChecks(gc, op, [condition, data_t, data_f], ref)
|