mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
53 lines
2.0 KiB
Python
53 lines
2.0 KiB
Python
## @package onnx
|
|
# Module caffe2.python.onnx.backend_rep_cpp
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from onnx.backend.base import BackendRep, namedtupledict
|
|
|
|
# This is a wrapper around C++ Caffe2BackendRep,
|
|
# mainly to handle the different input and output types for convenience of Python
|
|
class Caffe2CppRep(BackendRep):
|
|
def __init__(self, cpp_rep):
|
|
super(Caffe2CppRep, self).__init__()
|
|
self.__core = cpp_rep
|
|
self.__external_outputs = cpp_rep.external_outputs()
|
|
self.__external_inputs = cpp_rep.external_inputs()
|
|
self.__uninitialized_inputs = cpp_rep.uninitialized_inputs()
|
|
|
|
def init_net(self):
|
|
return self.__core.init_net()
|
|
|
|
def pred_net(self):
|
|
return self.__core.pred_net()
|
|
|
|
def external_outputs(self):
|
|
return self.__core.external_outputs()
|
|
|
|
def external_inputs(self):
|
|
return self.__core.external_inputs()
|
|
|
|
def run(self, inputs):
|
|
output_values = None
|
|
if isinstance(inputs, dict):
|
|
output_values = self.__core.run(inputs)
|
|
elif isinstance(inputs, list) or isinstance(inputs, tuple):
|
|
if len(inputs) != len(self.__uninitialized_inputs):
|
|
raise RuntimeError('Expected {} values for uninitialized '
|
|
'graph inputs ({}), but got {}.'.format(
|
|
len(self.__uninitialized_inputs),
|
|
', '.join(self.__uninitialized_inputs),
|
|
len(inputs)))
|
|
input_map = {}
|
|
for k, v in zip(self.__uninitialized_inputs, inputs):
|
|
input_map[k] = v
|
|
output_values = self.__core.run(input_map)
|
|
else:
|
|
# single input
|
|
output_values = self.__core.run([inputs])
|
|
return namedtupledict('Outputs', self.__external_outputs)(*output_values)
|
|
|