mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
46 lines
1.4 KiB
Python
46 lines
1.4 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import numpy as np
|
|
|
|
from hypothesis import given
|
|
import hypothesis.strategies as st
|
|
|
|
from caffe2.python import core, workspace
|
|
import caffe2.python.hypothesis_test_util as hu
|
|
|
|
|
|
class TestTTPad(hu.HypothesisTestCase):
|
|
@given(K=st.integers(min_value=2, max_value=10),
|
|
M=st.integers(min_value=10, max_value=20),
|
|
N=st.integers(min_value=10, max_value=20),
|
|
**hu.gcs)
|
|
def test_tt_pad(self, K, M, N, gc, dc):
|
|
op = core.CreateOperator(
|
|
'TTPad',
|
|
['A'],
|
|
['A', 'dim0'],
|
|
scale=(K))
|
|
|
|
A = np.random.rand(M, N).astype(np.float32)
|
|
workspace.FeedBlob('A', A)
|
|
workspace.RunOperatorOnce(op)
|
|
|
|
def tt_pad_ref(A_):
|
|
M_ = A_.shape[0]
|
|
if M_ % K == 0:
|
|
new_dim0 = M_
|
|
else:
|
|
new_dim0 = (M_ // K + 1) * K
|
|
return (np.vstack((A_, np.zeros((new_dim0 - M_, A_.shape[1])))),
|
|
np.array([A.shape[0]]))
|
|
|
|
# Check against numpy reference
|
|
self.assertReferenceChecks(gc, op, [A], tt_pad_ref)
|
|
# Check over multiple devices
|
|
self.assertDeviceChecks(dc, op, [A], [0])
|
|
# Gradient check wrt A
|
|
self.assertGradientChecks(gc, op, [A], 0, [0])
|