mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
* Comprehensive rewrite of Torch CuDNN bindings / a bit of ATen infra The executive summary is that this moves the torch/csrc/cudnn library into ATen, adding a number of new cudnn_ methods to ATen for batchnorm, convolution, affine grid generator and grid sampler. ATen infra changes: - TensorGeometry was moved to ATen - TensorGeometry was modified to make its interface resemble that of Tensor; in particular, sizes is no longer a field, it's a method. - AT_CUDA_ENABLED macro is set via ATen/Config.h header which is generated at cmake configure time. Fixes https://github.com/zdevito/ATen/issues/168 - Change AT_CUDA_ENABLED macro to be a function macro, so that we error if it is not defined - Introduce a new TensorArg class, which is a Tensor plus a little metadata. This helps us give good error messages when checking dimensions/shapes of tensors. Fixes https://github.com/zdevito/ATen/issues/169 - Also introduce a TensorGeometryArg class, for when you don't need the actual tensor data (which is most of the time.) - Add ATen/Check.h, which contains a number of utility functions for testing shapes, types and devices of input tensors. This will be particulary useful for native methods, which don't get code generated input testing code. These functions take a 'CheckedFrom' argument, at the moment just a string, which specifies some extra information about what function was doing the actual checking; this greatly improves error messages. - Many check functions take initializer lists, which let you test that all tensors have some property. This API is peculiar, in that we IGNORE undefined tensors in this case. This is handled by filterDefined. - Add AT_CUDNN_ENABLED macro - CuDNN linking from ATen was improved; for example, we now actually add the CuDNN headers to our include path. - Add some missing override specifiers to some methods - We now actually build tests with CUDA functionality accessible (previously, AT_CUDA_ENABLED was not defined, meaning that the headers were missing all CUDA-only functionality.) - Native functions now support giving explicit names to return outputs in yaml. This makes it possible to hook into the NN autogenerated derivatives codepath using native functions. CuDNN rewrite changes: - torch/csrc/cudnn now uses ATen (rather than passing around THVoidTensor) and lives in ATen. This lets us remove tensorPointer shenanigans. The functions are exposed to ATen as native functions described in aten/src/ATen/cudnn/cuDNN.yaml - ATen now builds and links against CuDNN when enabled. The cmake package script was taken from Caffe2. - Some header reorganization was done to help reduce dependencies on headers (this reorg is no longer used but I've kept it) - Rename CHECK to CUDNN_CHECK - Rip out old shape/type testing code in favor of modern ATen/Check.h interface using TensorArg. In many cases, increase the robustness of the checking code. - Change the inputs of the public facing functions, so that they can be bound by ATen - Delete THCState*; this is retrieved from the global ATen context - Delete cudnnHandle_t, this is retrieved from the global Handles.h - Delete cudnnDataType_t, this is retrieved from the Tensor type - Delete Convolution class, instead its constituent arguments are passed individually - Change functions to return tensors, rather than take an appropriately sized output tensor as an input. - Redo how transposed convolution / backward convolution is implemented (knock on effect of returning tensors). Previously it was assumed that you would always pass an appropriately sized output tensor, but we don't want to do this anymore. For backwards, we instead give the desired output tensor (input, really) size, because that is readily available. For *transposed* convolution, however, we take output_padding, and otherwise do the shape calculation. - Redo how legacy group convolution is implemented (knock on effect from porting cudnn to ATen.) Previously, group convolution was implemented by manually constructing sizes and strides and then outputting appropriate, with macros switching between individual groups and all-at-once based on CuDNN version. Now, the code looks exactly what you'd expect: there's a top-level wrapping function that supports group convolution no matter the version of CuDNN, and a low-level wrapper which supports only what CuDNN supports. The top-level function conditions on CuDNN version, and invokes the low-level interface 1 or n times. - There is now a debugging printer for tensor descriptors. - Convolution struct is replaced with ConvolutionArgs, which is not part of the public API but is used internally to conveniently pass around all of the arguments needed for Convolution. - Add some constexprs for well-known dimensions, reduce amount of magic numbers in code. - Put 'deterministic' in to ConvParams. Fixes #3659 - Lots more comments. - Some pessimizations, in the name of code clarity: - The descriptors are initialized on every invocation of convolution forward/backward. Previously, the descriptors were cached, so that you didn't have to initialize them again on backwards. This is difficult to support in the ATen interface so I didn't support it. - Legacy group convolution initializes its workspace for *every* group it performs. I did not feel motivated to fix this because the legacy codepath is already quite slow. - Affine grid generator and grid sampler automatically call contiguous on their arguments as necessary. - Batchnorm input checking is greatly beefed up, it now checks for the following input characteristics: - Definedness - GPU location - Type - Contiguity - Size PyTorch binding code changes - batchnorm now uses consistent var/data naming - batchnorm and convolution make use of new ATen bindings - Affine grid generator and grid sampler make use of ATen CuDNN bindings via derivatives.yaml. This means I had to restructure the code a little, since the THNN bindings still go through a legacy Python class. - I fixed some warnings: - s/friend class/friend struct/ on InterpreterStateImpl - Removed pessimizing move 'detached' in torch/csrc/autograd/variable.cpp - Removed unused pack_list on Scalar Signed-off-by: Edward Z. Yang <ezyang@fb.com> GCC 4.8 buildfix Signed-off-by: Edward Z. Yang <ezyang@fb.com> Add TensorGeometry to ATen.h Signed-off-by: Edward Z. Yang <ezyang@fb.com> CUDNN_CHECK Signed-off-by: Edward Z. Yang <ezyang@fb.com> Update TODO comment Signed-off-by: Edward Z. Yang <ezyang@fb.com> Delete return in cudnn_grid_sampler Signed-off-by: Edward Z. Yang <ezyang@fb.com> s/cudnnSetStreamToCurrent/setCuDNNStreamToCurrent/g Signed-off-by: Edward Z. Yang <ezyang@fb.com> Don't allocate a new vector when filtering defined. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Remove Check overloads, convert to pass references. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Some more microbenchmarking. Signed-off-by: Edward Z. Yang <ezyang@fb.com>
1753 lines
67 KiB
Python
1753 lines
67 KiB
Python
"""Functional interface"""
|
|
|
|
import warnings
|
|
import math
|
|
from operator import mul
|
|
from functools import reduce
|
|
|
|
import torch
|
|
from torch._C import _infer_size, _add_docstr
|
|
from . import _functions
|
|
from .modules import utils
|
|
from ._functions.linear import Bilinear
|
|
from ._functions.padding import ConstantPadNd
|
|
from ._functions import vision
|
|
from torch.autograd import Variable
|
|
from .modules.utils import _single, _pair, _triple
|
|
|
|
# Convolutions
|
|
_ConvNd = torch._C._functions.ConvNd
|
|
|
|
|
|
def conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1,
|
|
groups=1):
|
|
r"""Applies a 1D convolution over an input signal composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.Conv1d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor of shape (minibatch x in_channels x iW)
|
|
weight: filters of shape (out_channels x in_channels x kW)
|
|
bias: optional bias of shape (out_channels). Default: None
|
|
stride: the stride of the convolving kernel. Can be a single number or
|
|
a tuple (sW,). Default: 1
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padW,). Default: 0
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple (dW,). Default: 1
|
|
groups: split input into groups, in_channels should be divisible by
|
|
the number of groups. Default: 1
|
|
|
|
Examples::
|
|
|
|
>>> filters = autograd.Variable(torch.randn(33, 16, 3))
|
|
>>> inputs = autograd.Variable(torch.randn(20, 16, 50))
|
|
>>> F.conv1d(inputs, filters)
|
|
"""
|
|
if input is not None and input.dim() != 3:
|
|
raise ValueError("Expected 3D tensor as input, got {}D tensor instead.".format(input.dim()))
|
|
|
|
f = _ConvNd(_single(stride), _single(padding), _single(dilation), False,
|
|
_single(0), groups, torch.backends.cudnn.benchmark,
|
|
torch.backends.cudnn.deterministic, torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1,
|
|
groups=1):
|
|
r"""Applies a 2D convolution over an input image composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.Conv2d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor (minibatch x in_channels x iH x iW)
|
|
weight: filters tensor (out_channels x in_channels/groups x kH x kW)
|
|
bias: optional bias tensor (out_channels). Default: None
|
|
stride: the stride of the convolving kernel. Can be a single number or a
|
|
tuple (sH, sW). Default: 1
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padH, padW). Default: 0
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple (dH, dW). Default: 1
|
|
groups: split input into groups, in_channels should be divisible by the
|
|
number of groups. Default: 1
|
|
|
|
Examples::
|
|
|
|
>>> # With square kernels and equal stride
|
|
>>> filters = autograd.Variable(torch.randn(8,4,3,3))
|
|
>>> inputs = autograd.Variable(torch.randn(1,4,5,5))
|
|
>>> F.conv2d(inputs, filters, padding=1)
|
|
"""
|
|
if input is not None and input.dim() != 4:
|
|
raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()))
|
|
|
|
f = _ConvNd(_pair(stride), _pair(padding), _pair(dilation), False,
|
|
_pair(0), groups, torch.backends.cudnn.benchmark,
|
|
torch.backends.cudnn.deterministic, torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
def conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1,
|
|
groups=1):
|
|
r"""Applies a 3D convolution over an input image composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.Conv3d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
|
|
weight: filters tensor of shape (out_channels x in_channels x kT x kH x kW)
|
|
bias: optional bias tensor of shape (out_channels). Default: None
|
|
stride: the stride of the convolving kernel. Can be a single number or a
|
|
tuple (sT, sH, sW). Default: 1
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padT, padH, padW). Default: 0
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple (dT, dH, dW). Default: 1
|
|
groups: split input into groups, in_channels should be divisible by
|
|
the number of groups. Default: 1
|
|
|
|
Examples::
|
|
|
|
>>> filters = autograd.Variable(torch.randn(33, 16, 3, 3, 3))
|
|
>>> inputs = autograd.Variable(torch.randn(20, 16, 50, 10, 20))
|
|
>>> F.conv3d(inputs, filters)
|
|
"""
|
|
|
|
if input is not None and input.dim() != 5:
|
|
raise ValueError("Expected 5D tensor as input, got {}D tensor instead.".format(input.dim()))
|
|
|
|
f = _ConvNd(_triple(stride), _triple(padding), _triple(dilation), False,
|
|
_triple(0), groups, torch.backends.cudnn.benchmark,
|
|
torch.backends.cudnn.deterministic, torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
def conv_transpose1d(input, weight, bias=None, stride=1, padding=0,
|
|
output_padding=0, groups=1, dilation=1):
|
|
r"""Applies a 1D transposed convolution operator over an input signal
|
|
composed of several input planes, sometimes also called "deconvolution".
|
|
|
|
See :class:`~torch.nn.ConvTranspose1d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor of shape (minibatch x in_channels x iW)
|
|
weight: filters of shape (in_channels x out_channels x kW)
|
|
bias: optional bias of shape (out_channels). Default: None
|
|
stride: the stride of the convolving kernel. Can be a single number or a
|
|
tuple (sW,). Default: 1
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padW,). Default: 0
|
|
output_padding: implicit zero-paddings of 0 <= padding < stride on both
|
|
sides of the output. Can be a single number or a tuple (out_padW,).
|
|
Default: 0
|
|
groups: split input into groups, in_channels should be divisible by the
|
|
number of groups. Default: 1
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple (dW,). Default: 1
|
|
"""
|
|
if input is not None and input.dim() != 3:
|
|
raise ValueError("Expected 3D tensor as input, got {}D tensor instead.".format(input.dim()))
|
|
|
|
f = _ConvNd(_single(stride), _single(padding), _single(dilation), True,
|
|
_single(output_padding),
|
|
groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic,
|
|
torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
def conv_transpose2d(input, weight, bias=None, stride=1, padding=0,
|
|
output_padding=0, groups=1, dilation=1):
|
|
r"""Applies a 2D transposed convolution operator over an input image
|
|
composed of several input planes, sometimes also called "deconvolution".
|
|
|
|
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor of shape (minibatch x in_channels x iH x iW)
|
|
weight: filters of shape (in_channels x out_channels x kH x kW)
|
|
bias: optional bias of shape (out_channels). Default: None
|
|
stride: the stride of the convolving kernel. Can be a single number or a
|
|
tuple (sH, sW). Default: 1
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padH, padW). Default: 0
|
|
output_padding: implicit zero-paddings of 0 <= padding < stride on both
|
|
sides of the output. Can be a single number or a tuple
|
|
(out_padH, out_padW). Default: 0
|
|
groups: split input into groups, in_channels should be divisible by the
|
|
number of groups. Default: 1
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple (dH, dW). Default: 1
|
|
"""
|
|
|
|
if input is not None and input.dim() != 4:
|
|
raise ValueError("Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()))
|
|
|
|
f = _ConvNd(_pair(stride), _pair(padding), _pair(dilation), True,
|
|
_pair(output_padding), groups, torch.backends.cudnn.benchmark,
|
|
torch.backends.cudnn.deterministic, torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
def conv_transpose3d(input, weight, bias=None, stride=1, padding=0,
|
|
output_padding=0, groups=1, dilation=1):
|
|
r"""Applies a 3D transposed convolution operator over an input image
|
|
composed of several input planes, sometimes also called "deconvolution"
|
|
|
|
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor of shape (minibatch x in_channels x iT x iH x iW)
|
|
weight: filters of shape (in_channels x out_channels x kH x kW)
|
|
bias: optional bias of shape (out_channels). Default: None
|
|
stride: the stride of the convolving kernel. Can be a single number or a
|
|
tuple (sT, sH, sW). Default: 1
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padT, padH, padW). Default: 0
|
|
output_padding: implicit zero-paddings of 0 <= padding < stride on both
|
|
sides of the output. Can be a single number or a tuple
|
|
(out_padT, out_padH, out_padW). Default: 0
|
|
groups: split input into groups, in_channels should be divisible by the
|
|
number of groups. Default: 1
|
|
dilation: the spacing between kernel elements. Can be a single number or
|
|
a tuple (dT, dH, dW). Default: 1
|
|
"""
|
|
if input is not None and input.dim() != 5:
|
|
raise ValueError("Expected 5D tensor as input, got {}D tensor instead.".format(input.dim()))
|
|
|
|
f = _ConvNd(_triple(stride), _triple(padding), _triple(dilation), True,
|
|
_triple(output_padding), groups, torch.backends.cudnn.benchmark,
|
|
torch.backends.cudnn.deterministic, torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
# Pooling
|
|
def avg_pool1d(input, kernel_size, stride=None, padding=0,
|
|
ceil_mode=False, count_include_pad=True):
|
|
r"""Applies a 1D average pooling over an input signal composed of several
|
|
input planes.
|
|
|
|
See :class:`~torch.nn.AvgPool1d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor (minibatch x in_channels x iW)
|
|
kernel_size: the size of the window. Can be a single number or a
|
|
tuple (kW,)
|
|
stride: the stride of the window. Can be a single number or a tuple
|
|
(sW,). Default: :attr:`kernel_size`
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padW,). Default: 0
|
|
ceil_mode: when True, will use `ceil` instead of `floor` to compute the
|
|
output shape. Default: ``False``
|
|
count_include_pad: when True, will include the zero-padding in the
|
|
averaging calculation. Default: ``True``
|
|
|
|
Example:
|
|
>>> # pool of square window of size=3, stride=2
|
|
>>> input = Variable(torch.Tensor([[[1,2,3,4,5,6,7]]]))
|
|
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
|
|
Variable containing:
|
|
(0 ,.,.) =
|
|
2 4 6
|
|
[torch.FloatTensor of size 1x1x3]
|
|
"""
|
|
if input.dim() != 3:
|
|
raise ValueError('expected 3D input (got {} dimensions)'
|
|
.format(input.dim()))
|
|
kernel_size = _single(kernel_size) + (1,)
|
|
stride = _single(stride) + (1,) if stride is not None else kernel_size
|
|
padding = _single(padding) + (0,)
|
|
return avg_pool2d(input.unsqueeze(3), kernel_size, stride, padding,
|
|
ceil_mode, count_include_pad).squeeze(3)
|
|
|
|
|
|
avg_pool2d = _add_docstr(torch._C._nn.avg_pool2d, r"""
|
|
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Variable
|
|
|
|
Applies 2D average-pooling operation in kh x kw regions by step size
|
|
dh x dw steps. The number of output features is equal to the number of
|
|
input planes.
|
|
|
|
See :class:`~torch.nn.AvgPool2d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor (minibatch x in_channels x iH x iW)
|
|
kernel_size: size of the pooling region. Can be a single number or a
|
|
tuple (kH x kW)
|
|
stride: stride of the pooling operation. Can be a single number or a
|
|
tuple (sH, sW). Default is equal to kernel size
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padH, padW). Default: 0
|
|
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
|
to compute the output shape. Default: ``False``
|
|
count_include_pad: when True, will include the zero-padding in th
|
|
averaging calculation. Default: ``True``
|
|
""")
|
|
|
|
avg_pool3d = _add_docstr(torch._C._nn.avg_pool3d, r"""
|
|
avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Variable
|
|
|
|
Applies 3D average-pooling operation in kt x kh x kw regions by step
|
|
size dt x dh x dw steps. The number of output features is equal to the
|
|
number of input planes / dt.
|
|
|
|
See :class:`~torch.nn.AvgPool3d` for details and output shape.
|
|
|
|
Args:
|
|
input: input tensor (minibatch x in_channels x iT x iH x iW)
|
|
kernel_size: size of the pooling region. Can be a single number or a
|
|
tuple (kT x kH x kW)
|
|
stride: stride of the pooling operation. Can be a single number or a
|
|
tuple (sT, sH, sW). Default is equal to kernel size
|
|
padding: implicit zero paddings on both sides of the input. Can be a
|
|
single number or a tuple (padT, padH, padW), Default: 0
|
|
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
|
to compute the output shape
|
|
count_include_pad: when True, will include the zero-padding in th
|
|
averaging calculation
|
|
""")
|
|
|
|
|
|
# share the same interface
|
|
def max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False):
|
|
"""Applies a 1D max pooling over an input signal composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.MaxPool1d` for details.
|
|
"""
|
|
ret = _functions.thnn.MaxPool1d.apply(input, kernel_size, stride, padding, dilation,
|
|
ceil_mode)
|
|
return ret if return_indices else ret[0]
|
|
|
|
|
|
def max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False):
|
|
"""Applies a 2D max pooling over an input signal composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.MaxPool2d` for details.
|
|
"""
|
|
ret = torch._C._nn.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
|
|
return ret if return_indices else ret[0]
|
|
|
|
|
|
def max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1,
|
|
ceil_mode=False, return_indices=False):
|
|
"""Applies a 3D max pooling over an input signal composed of several input
|
|
planes.
|
|
|
|
See :class:`~torch.nn.MaxPool2d` for details.
|
|
"""
|
|
ret = _functions.thnn.MaxPool3d.apply(input, kernel_size, stride, padding, dilation,
|
|
ceil_mode)
|
|
return ret if return_indices else ret[0]
|
|
|
|
|
|
def _unpool_output_size(input, kernel_size, stride, padding, output_size):
|
|
input_size = input.size()
|
|
default_size = []
|
|
for d in range(len(kernel_size)):
|
|
default_size.append((input_size[d + 2] - 1) * stride[d] +
|
|
kernel_size[d] - 2 * padding[d])
|
|
if output_size is None:
|
|
return default_size
|
|
|
|
output_size = list(output_size)
|
|
if len(output_size) == len(kernel_size) + 2:
|
|
output_size = output_size[2:]
|
|
if len(output_size) != len(kernel_size):
|
|
raise ValueError("output_size should be a sequence containing "
|
|
"{} or {} elements, but it has a length of '{}'"
|
|
.format(len(kernel_size), len(kernel_size) + 2,
|
|
len(output_size)))
|
|
for d in range(len(kernel_size)):
|
|
min_size = default_size[d] - stride[d]
|
|
max_size = default_size[d] + stride[d]
|
|
if not (min_size < output_size[d] < max_size):
|
|
raise ValueError(
|
|
'invalid output_size "{}" (dim {} must be between {} and {})'
|
|
.format(output_size, d, min_size, max_size))
|
|
|
|
return output_size
|
|
|
|
|
|
def max_unpool1d(input, indices, kernel_size, stride=None, padding=0,
|
|
output_size=None):
|
|
"""Computes a partial inverse of :class:`MaxPool1d`.
|
|
|
|
See :class:`~torch.nn.MaxUnpool1d` for details.
|
|
"""
|
|
kernel_size = _single(kernel_size)
|
|
stride = _single(stride)
|
|
padding = _single(padding)
|
|
output_size = _unpool_output_size(input, kernel_size, stride, padding,
|
|
output_size)
|
|
return torch._C._nn.max_unpool2d(input.unsqueeze(3), indices.unsqueeze(3), output_size + [1]).squeeze(3)
|
|
|
|
|
|
def max_unpool2d(input, indices, kernel_size, stride=None, padding=0,
|
|
output_size=None):
|
|
"""Computes a partial inverse of :class:`MaxPool2d`.
|
|
|
|
See :class:`~torch.nn.MaxUnpool2d` for details.
|
|
"""
|
|
kernel_size = _pair(kernel_size)
|
|
stride = _pair(stride)
|
|
padding = _pair(padding)
|
|
output_size = _unpool_output_size(input, kernel_size, stride, padding,
|
|
output_size)
|
|
return torch._C._nn.max_unpool2d(input, indices, output_size)
|
|
|
|
|
|
def max_unpool3d(input, indices, kernel_size, stride=None, padding=0,
|
|
output_size=None):
|
|
"""Computes a partial inverse of :class:`MaxPool3d`.
|
|
|
|
See :class:`~torch.nn.MaxUnpool3d` for details.
|
|
"""
|
|
kernel_size = _triple(kernel_size)
|
|
stride = _triple(stride)
|
|
padding = _triple(padding)
|
|
output_size = _unpool_output_size(input, kernel_size, stride, padding,
|
|
output_size)
|
|
return torch._C._nn.max_unpool3d(input, indices, output_size, stride, padding)
|
|
|
|
|
|
def lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
|
|
"""Applies a 2D power-average pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.LPPool2d` for details.
|
|
"""
|
|
kw, kh = utils._pair(kernel_size)
|
|
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
|
|
return out.mul(kw * kh).pow(1. / norm_type)
|
|
|
|
|
|
def lp_pool1d(input, norm_type, kernel_size, stride=None, ceil_mode=False):
|
|
"""Applies a 1D power-average pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.LPPool1d` for details.
|
|
"""
|
|
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
|
|
return out.mul(kernel_size).pow(1. / norm_type)
|
|
|
|
|
|
def adaptive_max_pool1d(input, output_size, return_indices=False):
|
|
r"""Applies a 1D adaptive max pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer)
|
|
return_indices: whether to return pooling indices. Default: ``False``
|
|
"""
|
|
ret = _functions.thnn.AdaptiveMaxPool1d.apply(input, output_size)
|
|
return ret if return_indices else ret[0]
|
|
|
|
|
|
def adaptive_max_pool2d(input, output_size, return_indices=False):
|
|
r"""Applies a 2D adaptive max pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer or
|
|
double-integer tuple)
|
|
return_indices: whether to return pooling indices. Default: ``False``
|
|
"""
|
|
ret = _functions.thnn.AdaptiveMaxPool2d.apply(input, output_size)
|
|
return ret if return_indices else ret[0]
|
|
|
|
|
|
def adaptive_max_pool3d(input, output_size, return_indices=False):
|
|
r"""Applies a 3D adaptive max pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer or
|
|
triple-integer tuple)
|
|
return_indices: whether to return pooling indices. Default: ``False``
|
|
"""
|
|
ret = _functions.thnn.AdaptiveMaxPool3d.apply(input, output_size)
|
|
return ret if return_indices else ret[0]
|
|
|
|
|
|
def adaptive_avg_pool1d(input, output_size):
|
|
r"""Applies a 1D adaptive average pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer)
|
|
"""
|
|
return _functions.thnn.AdaptiveAvgPool1d.apply(input, output_size)
|
|
|
|
|
|
def adaptive_avg_pool2d(input, output_size):
|
|
r"""Applies a 2D adaptive average pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer or
|
|
double-integer tuple)
|
|
"""
|
|
return _functions.thnn.AdaptiveAvgPool2d.apply(input, output_size)
|
|
|
|
|
|
def adaptive_avg_pool3d(input, output_size):
|
|
r"""Applies a 3D adaptive average pooling over an input signal composed of
|
|
several input planes.
|
|
|
|
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.
|
|
|
|
Args:
|
|
output_size: the target output size (single integer or
|
|
triple-integer tuple)
|
|
"""
|
|
return _functions.thnn.AdaptiveAvgPool3d.apply(input, output_size)
|
|
|
|
|
|
# Activation functions
|
|
|
|
def dropout(input, p=0.5, training=False, inplace=False):
|
|
return _functions.dropout.Dropout.apply(input, p, training, inplace)
|
|
|
|
|
|
def alpha_dropout(input, p=0.5, training=False):
|
|
r"""Applies alpha dropout to the input.
|
|
|
|
See :class:`~torch.nn.AlphaDropout` for details.
|
|
|
|
Args:
|
|
p (float, optional): the drop probability. Default: 0.5
|
|
training (bool, optional): switch between training and evaluation mode. Default: ``False``
|
|
"""
|
|
if p < 0 or p > 1:
|
|
raise ValueError("dropout probability has to be between 0 and 1, "
|
|
"but got {}".format(p))
|
|
|
|
if p == 0 or not training:
|
|
return input
|
|
|
|
alpha = -1.7580993408473766
|
|
keep_prob = 1 - p
|
|
# TODO avoid casting to byte after resize
|
|
noise = input.data.new().resize_(input.size())
|
|
noise.bernoulli_(p)
|
|
noise = Variable(noise.byte())
|
|
|
|
output = input.masked_fill(noise, alpha)
|
|
|
|
a = (keep_prob + alpha ** 2 * keep_prob * (1 - keep_prob)) ** (-0.5)
|
|
b = -a * alpha * (1 - keep_prob)
|
|
|
|
return output.mul_(a).add_(b)
|
|
|
|
|
|
def dropout2d(input, p=0.5, training=False, inplace=False):
|
|
return _functions.dropout.FeatureDropout.apply(input, p, training, inplace)
|
|
|
|
|
|
def dropout3d(input, p=0.5, training=False, inplace=False):
|
|
return _functions.dropout.FeatureDropout.apply(input, p, training, inplace)
|
|
|
|
|
|
def threshold(input, threshold, value, inplace=False):
|
|
"""Thresholds each element of the input Tensor.
|
|
|
|
See :class:`~torch.nn.Threshold` for more details.
|
|
"""
|
|
if inplace:
|
|
return torch._C._nn.threshold_(input, threshold, value)
|
|
return torch._C._nn.threshold(input, threshold, value)
|
|
|
|
|
|
threshold_ = _add_docstr(torch._C._nn.threshold_, r"""
|
|
threshold_(input, threshold, value) -> Variable
|
|
|
|
In-place version of :func:`~threshold`.
|
|
""")
|
|
|
|
|
|
def relu(input, inplace=False):
|
|
"""relu(input, threshold, value, inplace=False) -> Variable
|
|
|
|
Applies the rectified linear unit function element-wise. See
|
|
:class:`~torch.nn.ReLU` for more details.
|
|
"""
|
|
return threshold(input, 0, 0, inplace)
|
|
|
|
|
|
def relu_(input):
|
|
r"""In-place version of :func:`~relu`."""
|
|
return threshold_(input, 0, 0)
|
|
|
|
|
|
glu = _add_docstr(torch._C._nn.glu, r"""
|
|
glu(input, dim=-1) -> Variable
|
|
|
|
The gated linear unit. Computes:
|
|
|
|
.. math ::
|
|
|
|
H = A \times \sigma(B)
|
|
|
|
where `input` is split in half along `dim` to form `A` and `B`.
|
|
|
|
See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_.
|
|
|
|
Args:
|
|
input (Variable): input variable
|
|
dim (int): dimension on which to split the input
|
|
""")
|
|
|
|
|
|
def hardtanh(input, min_val=-1., max_val=1., inplace=False):
|
|
r"""
|
|
hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Variable
|
|
|
|
Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more
|
|
details.
|
|
"""
|
|
if inplace:
|
|
return torch._C._nn.hardtanh_(input, min_val, max_val)
|
|
return torch._C._nn.hardtanh(input, min_val, max_val)
|
|
|
|
|
|
hardtanh_ = _add_docstr(torch._C._nn.hardtanh_, r"""
|
|
hardtanh_(input, min_val=-1., max_val=1.) -> Variable
|
|
|
|
In-place version of :func:`~hardtanh`.
|
|
""")
|
|
|
|
|
|
def relu6(input, inplace=False):
|
|
r"""relu6(input, inplace=False) -> Variable
|
|
|
|
Applies the element-wise function :math:`{ReLU6}(x) = min(max(0,x), 6)`.
|
|
|
|
See :class:`~torch.nn.ReLU6` for more details.
|
|
"""
|
|
return hardtanh(input, 0, 6, inplace)
|
|
|
|
|
|
def elu(input, alpha=1., inplace=False):
|
|
r"""Applies element-wise,
|
|
:math:`f(x) = max(0,x) + min(0, alpha * (exp(x) - 1))`.
|
|
|
|
See :class:`~torch.nn.ELU` for more details.
|
|
"""
|
|
if inplace:
|
|
return torch._C._nn.elu_(input, alpha)
|
|
return torch._C._nn.elu(input, alpha)
|
|
|
|
|
|
elu_ = _add_docstr(torch._C._nn.elu_, r"""
|
|
elu_(input, alpha=1.) -> Variable
|
|
|
|
In-place verison of :func:`~elu`.
|
|
""")
|
|
|
|
|
|
def selu(input, inplace=False):
|
|
r"""selu(input, inplace=False) -> Variable
|
|
|
|
Applies element-wise,
|
|
:math:`f(x) = scale * (\max(0,x) + \min(0, alpha * (\exp(x) - 1)))`,
|
|
with ``alpha=1.6732632423543772848170429916717`` and
|
|
``scale=1.0507009873554804934193349852946``.
|
|
|
|
See :class:`~torch.nn.SELU` for more details.
|
|
"""
|
|
return _functions.thnn.SELU.apply(input, inplace)
|
|
|
|
|
|
def leaky_relu(input, negative_slope=0.01, inplace=False):
|
|
r"""
|
|
leaky_relu(input, negative_slope=0.01, inplace=False) -> Variable
|
|
|
|
Applies element-wise,
|
|
:math:`f(x) = max(0, x) + {negative\_slope} * min(0, x)`
|
|
|
|
See :class:`~torch.nn.LeakyReLU` for more details.
|
|
"""
|
|
if inplace:
|
|
return torch._C._nn.leaky_relu_(input, negative_slope)
|
|
return torch._C._nn.leaky_relu(input, negative_slope)
|
|
|
|
|
|
leaky_relu_ = _add_docstr(torch._C._nn.leaky_relu_, r"""
|
|
leaky_relu_(input, negative_slope=0.01) -> Variable
|
|
|
|
In-place version of :func:`~leaky_relu`.
|
|
""")
|
|
|
|
|
|
prelu = _add_docstr(torch._C._nn.prelu, r"""
|
|
prelu(input, weight) -> Variable
|
|
|
|
Applies element-wise the function
|
|
:math:`PReLU(x) = max(0,x) + weight * min(0,x)` where weight is a
|
|
learnable parameter.
|
|
|
|
See :class:`~torch.nn.PReLU` for more details.
|
|
""")
|
|
|
|
|
|
def rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False):
|
|
r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Variable
|
|
|
|
Randomized leaky ReLU.
|
|
"""
|
|
if inplace:
|
|
return torch._C._nn.rrelu_(input, lower, upper, training)
|
|
return torch._C._nn.rrelu(input, lower, upper, training)
|
|
|
|
|
|
rrelu_ = _add_docstr(torch._C._nn.rrelu_, r"""
|
|
rrelu_(input, lower=1./8, upper=1./3, training=False) -> Variable
|
|
|
|
In-place version of :func:`~rrelu`.
|
|
""")
|
|
|
|
logsigmoid = _add_docstr(torch._C._nn.log_sigmoid, r"""
|
|
logsigmoid(input) -> Variable
|
|
|
|
Applies element-wise :math:`LogSigmoid(x) = log( 1 / (1 + exp(-x_i)))`
|
|
|
|
See :class:`~torch.nn.LogSigmoid` for more details.
|
|
""")
|
|
|
|
hardshrink = _add_docstr(torch._C._nn.hardshrink, r"""
|
|
hardshrink(input, lambd=0.5) -> Variable
|
|
|
|
Applies the hard shrinkage function element-wise
|
|
|
|
See :class:`~torch.nn.Hardshrink` for more details.
|
|
""")
|
|
|
|
|
|
def tanhshrink(input):
|
|
r"""tanhshrink(input) -> Variable
|
|
|
|
Applies element-wise, :math:`Tanhshrink(x) = x - Tanh(x)`
|
|
|
|
See :class:`~torch.nn.Tanhshrink` for more details.
|
|
"""
|
|
return input - input.tanh()
|
|
|
|
|
|
def softsign(input):
|
|
r"""softsign(input) -> Variable
|
|
|
|
Applies element-wise, the function :math:`f(x) = x / (1 + |x|)`
|
|
|
|
See :class:`~torch.nn.Softsign` for more details.
|
|
"""
|
|
return input / (input.abs() + 1)
|
|
|
|
|
|
softplus = _add_docstr(torch._C._nn.softplus, r"""
|
|
softplus(input, beta=1, threshold=20) -> Variable
|
|
""")
|
|
|
|
|
|
def _get_softmax_dim(name, ndim, stacklevel):
|
|
warnings.warn("Implicit dimension choice for " + name + " has been deprecated. "
|
|
"Change the call to include dim=X as an argument.", stacklevel=stacklevel)
|
|
if ndim == 0 or ndim == 3:
|
|
return 0
|
|
else:
|
|
return 1
|
|
|
|
|
|
def softmin(input, dim=None, _stacklevel=3):
|
|
r"""Applies a softmin function.
|
|
|
|
Note that softmin(x) = softmax(-x). See softmax definition for mathematical formula.
|
|
|
|
See :class:`~torch.nn.Softmin` for more details.
|
|
|
|
Arguments:
|
|
input (Variable): input
|
|
dim (int): A dimension along which softmin will be computed (so every slice
|
|
along dim will sum to 1).
|
|
"""
|
|
if dim is None:
|
|
dim = _get_softmax_dim('softmin', input.dim(), _stacklevel)
|
|
return torch._C._nn.softmax(-input, dim)
|
|
|
|
|
|
def softmax(input, dim=None, _stacklevel=3):
|
|
r"""Applies a softmax function.
|
|
|
|
Softmax is defined as:
|
|
|
|
:math:`softmax(x) = \frac{exp(x_i)}{\sum_j exp(x_j)}`
|
|
|
|
It is applied to all slices along dim, and will rescale them so that the elements
|
|
lie in the range `(0, 1)` and sum to 1.
|
|
|
|
See :class:`~torch.nn.Softmax` for more details.
|
|
|
|
Arguments:
|
|
input (Variable): input
|
|
dim (int): A dimension along which softmax will be computed.
|
|
|
|
.. note::
|
|
This function doesn't work directly with NLLLoss,
|
|
which expects the Log to be computed between the Softmax and itself.
|
|
Use log_softmax instead (it's faster and has better numerical properties).
|
|
|
|
"""
|
|
if dim is None:
|
|
dim = _get_softmax_dim('softmax', input.dim(), _stacklevel)
|
|
return torch._C._nn.softmax(input, dim)
|
|
|
|
|
|
def log_softmax(input, dim=None, _stacklevel=3):
|
|
r"""Applies a softmax followed by a logarithm.
|
|
|
|
While mathematically equivalent to log(softmax(x)), doing these two
|
|
operations separately is slower, and numerically unstable. This function
|
|
uses an alternative formulation to compute the output and gradient correctly.
|
|
|
|
See :class:`~torch.nn.LogSoftmax` for more details.
|
|
|
|
Arguments:
|
|
input (Variable): input
|
|
dim (int): A dimension along which log_softmax will be computed.
|
|
"""
|
|
if dim is None:
|
|
dim = _get_softmax_dim('log_softmax', input.dim(), _stacklevel)
|
|
return torch._C._nn.log_softmax(input, dim)
|
|
|
|
|
|
def softshrink(input, lambd=0.5):
|
|
r"""softshrink(input, lambd=0.5) -> Variable
|
|
|
|
Applies the soft shrinkage function elementwise
|
|
|
|
See :class:`~torch.nn.Softshrink` for more details.
|
|
"""
|
|
return _functions.thnn.auto.Softshrink.apply(input, lambd)
|
|
|
|
|
|
def tanh(input):
|
|
r"""tanh(input) -> Variable
|
|
|
|
Applies element-wise,
|
|
:math:`f(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))`
|
|
|
|
See :class:`~torch.nn.Tanh` for more details.
|
|
"""
|
|
return input.tanh()
|
|
|
|
|
|
def sigmoid(input):
|
|
r"""sigmoid(input) -> Variable
|
|
|
|
Applies the element-wise function :math:`f(x) = 1 / ( 1 + exp(-x))`
|
|
|
|
See :class:`~torch.nn.Sigmoid` for more details.
|
|
"""
|
|
return input.sigmoid()
|
|
|
|
|
|
# etc.
|
|
|
|
def linear(input, weight, bias=None):
|
|
"""
|
|
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.
|
|
|
|
Shape:
|
|
- Input: :math:`(N, *, in\_features)` where `*` means any number of
|
|
additional dimensions
|
|
- Weight: :math:`(out\_features, in\_features)`
|
|
- Bias: :math:`(out\_features)`
|
|
- Output: :math:`(N, *, out\_features)`
|
|
"""
|
|
if input.dim() == 2 and bias is not None:
|
|
# fused op is marginally faster
|
|
return torch.addmm(bias, input, weight.t())
|
|
|
|
output = input.matmul(weight.t())
|
|
if bias is not None:
|
|
output += bias
|
|
return output
|
|
|
|
|
|
def bilinear(input1, input2, weight, bias=None):
|
|
if bias is None:
|
|
return Bilinear.apply(input1, input2, weight)
|
|
else:
|
|
return Bilinear.apply(input1, input2, weight, bias)
|
|
|
|
|
|
def embedding(input, embedding_matrix,
|
|
max_norm=None, norm_type=2, scale_grad_by_freq=False,
|
|
sparse=False):
|
|
r"""A simple lookup table that looks up embeddings in a fixed dictionary and size.
|
|
|
|
This module is often used to retrieve word embeddings using indices.
|
|
The input to the module is a list of indices, and the embedding matrix,
|
|
and the output is the corresponding word embeddings.
|
|
|
|
Args:
|
|
input: tensor, containing indices into the embedding matrix
|
|
embedding_matrix:
|
|
Number of rows should correspond to the maximum possible index + 1,
|
|
number of columns is the embedding size
|
|
max_norm (float, optional): If given, will renormalize the embeddings to always have a norm lesser than this
|
|
norm_type (float, optional): The p of the p-norm to compute for the max_norm option
|
|
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the frequency of
|
|
the words in the mini-batch.
|
|
sparse (boolean, optional): if ``True``, gradient w.r.t. weight matrix will be a sparse tensor. See Notes for
|
|
more details regarding sparse gradients.
|
|
|
|
Shape:
|
|
- Input: LongTensor `(N, W)`, N = mini-batch, W = number of indices to extract per mini-batch
|
|
- Embedding_matrix: FloatTensor `(V, embedding_dim)`, V = maximum index + 1, embedding_dim = embedding size
|
|
- Output: `(N, W, embedding_dim)`
|
|
|
|
Notes:
|
|
It is advised to only use `sparse=True` if `embedding_matrix` is a leaf Variable,
|
|
since some autograd functions may not propagate sparse gradients correctly.
|
|
Additionally, keep in mind that only a limited number of optimizers support
|
|
sparse gradients: currently it's `optim.SGD` (`cuda` and `cpu`), and `optim.Adagrad` (`cpu`)
|
|
|
|
Examples::
|
|
|
|
>>> # a batch of 2 samples of 4 indices each
|
|
>>> input = Variable(torch.LongTensor([[1,2,4,5],[4,3,2,9]]))
|
|
>>> # an embedding matrix containing 10 tensors of size 3
|
|
>>> embedding_matrix = Variable(torch.rand(10, 3))
|
|
>>> torch.nn.functional.embedding(input, embedding_matrix)
|
|
|
|
Variable containing:
|
|
(0 ,.,.) =
|
|
-1.0822 1.2522 0.2434
|
|
0.8393 -0.6062 -0.3348
|
|
0.6597 0.0350 0.0837
|
|
0.5521 0.9447 0.0498
|
|
|
|
(1 ,.,.) =
|
|
0.6597 0.0350 0.0837
|
|
-0.1527 0.0877 0.4260
|
|
0.8393 -0.6062 -0.3348
|
|
-0.8738 -0.9054 0.4281
|
|
[torch.FloatTensor of size 2x4x3]
|
|
|
|
>>> # example with padding_idx
|
|
>>> weights = torch.rand(10, 3)
|
|
>>> weights[0, :].zero_()
|
|
>>> embedding_matrix = Variable(weights)
|
|
>>> input = Variable(torch.LongTensor([[0,2,0,5]]))
|
|
>>> torch.nn.functional.embedding(input, embedding_matrix)
|
|
|
|
Variable containing:
|
|
(0 ,.,.) =
|
|
0.0000 0.0000 0.0000
|
|
0.3452 0.4937 -0.9361
|
|
0.0000 0.0000 0.0000
|
|
0.0706 -2.1962 -0.6276
|
|
[torch.FloatTensor of size 1x4x3]
|
|
|
|
"""
|
|
return _functions.thnn.Embedding.apply(
|
|
input, embedding_matrix,
|
|
-1, max_norm, norm_type,
|
|
scale_grad_by_freq, sparse
|
|
)
|
|
|
|
|
|
def embedding_bag(embedding_matrix, indices, offsets=None,
|
|
max_norm=None, norm_type=2, scale_grad_by_freq=False, mode='mean'):
|
|
r"""Computes sums or means of 'bags' of embeddings, without instantiating the
|
|
intermediate embeddings.
|
|
|
|
For bags of constant length,
|
|
* embedding_bag with `mode=sum` is equivalent to nn.functional.embedding followed by `torch.sum(dim=1)`
|
|
* with `mode=mean` is equivalent to nn.functional.embedding followed by `torch.mean(dim=1)`
|
|
|
|
However, embedding_bag is much more time and memory efficient than using a chain of these
|
|
operations.
|
|
|
|
Args:
|
|
embedding_matrix: FloatTensor, where number of rows should correspond to the maximum possible index + 1,
|
|
number of columns is the embedding size
|
|
indices (N or BxN): LongTensor containing the indices of the embeddings to extract.
|
|
When `input` is 1D Tensor of shape `N`, an `offsets` Tensor is given, that contains the
|
|
starting position of each new sequence in the mini-batch.
|
|
offsets (B or None): LongTensor containing the starting positions of each sample in a mini-batch of variable
|
|
length sequences. If `input` is 2D (BxN), then offsets does not need to be given,
|
|
as the `input` is treated as a mini-batch of fixed length sequences of length `N` each.
|
|
max_norm (float, optional): If given, will renormalize the embeddings to always have a norm lesser than this
|
|
norm_type (float, optional): The p of the p-norm to compute for the max_norm option
|
|
scale_grad_by_freq (boolean, optional): if given, this will scale gradients by the frequency of
|
|
the words in the dictionary.
|
|
mode (string, optional): 'sum' | 'mean'. Specifies the way to reduce the bag. Default: 'mean'
|
|
|
|
Shape:
|
|
- Embedding_matrix: FloatTensor `(V, embedding_dim)`,
|
|
V = number of embeddings, embedding_dim = embedding size
|
|
- Input: LongTensor `N`, N = number of embeddings to extract
|
|
(or) LongTensor `BxN`, B = number of sequences in mini-batch,
|
|
N = number of embeddings per sequence
|
|
- Offsets: LongTensor `B`, B = number of bags. The values are the
|
|
offsets in `input` for each bag, i.e. the cumsum of lengths.
|
|
Offsets is not given if Input is 2D `BxN` Tensor,
|
|
the input is considered to be of fixed-length sequences
|
|
- Output: `(B, embedding_dim)`
|
|
|
|
Examples::
|
|
|
|
>>> # an Embedding module containing 10 tensors of size 3
|
|
>>> embedding_matrix = Variable(torch.rand(10, 3))
|
|
>>> # a batch of 2 samples of 4 indices each
|
|
>>> input = Variable(torch.LongTensor([1,2,4,5,4,3,2,9]))
|
|
>>> offsets = Variable(torch.LongTensor([0,4]))
|
|
>>> embedding_bag(embedding_matrix, input, offsets)
|
|
|
|
Variable containing:
|
|
-1.1840 -0.2547 -0.5860
|
|
-0.7126 0.0002 -0.3411
|
|
[torch.FloatTensor of size 2x3]
|
|
|
|
"""
|
|
if indices.dim() == 2:
|
|
if offsets is not None:
|
|
raise ValueError("if input is 2D, then offsets has to be None"
|
|
", as input is treated is a mini-batch of"
|
|
" fixed length sequences. However, found "
|
|
"offsets of type {}".format(type(offsets)))
|
|
else:
|
|
offsets = Variable(torch.arange(0, indices.numel(), indices.size(1),
|
|
out=indices.data.new().long()))
|
|
indices = indices.view(-1)
|
|
|
|
elif indices.dim() != 1:
|
|
raise ValueError("input has to be 1D or 2D Tensor,"
|
|
" but got Tensor of dimension {}".format(indices.dim()))
|
|
|
|
if offsets is None:
|
|
raise ValueError("offsets has to be a 1D Tensor but got None")
|
|
|
|
return _functions.thnn.EmbeddingBag.apply(
|
|
embedding_matrix, indices, offsets,
|
|
max_norm, norm_type,
|
|
scale_grad_by_freq, mode
|
|
)
|
|
|
|
|
|
def batch_norm(input, running_mean, running_var, weight=None, bias=None,
|
|
training=False, momentum=0.1, eps=1e-5):
|
|
if training:
|
|
size = list(input.size())
|
|
if reduce(mul, size[2:], size[0]) == 1:
|
|
raise ValueError('Expected more than 1 value per channel when training, got input size {}'.format(size))
|
|
f = torch._C._functions.BatchNorm(running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled)
|
|
return f(input, weight, bias)
|
|
|
|
|
|
# loss
|
|
|
|
def nll_loss(input, target, weight=None, size_average=True, ignore_index=-100, reduce=True):
|
|
r"""The negative log likelihood loss.
|
|
|
|
See :class:`~torch.nn.NLLLoss` for details.
|
|
|
|
Args:
|
|
input: :math:`(N, C)` where `C = number of classes` or `(N, C, H, W)`
|
|
in case of 2D - Loss
|
|
target: :math:`(N)` where each value is `0 <= targets[i] <= C-1`
|
|
weight (Tensor, optional): a manual rescaling weight given to each
|
|
class. If given, has to be a Tensor of size `C`
|
|
size_average (bool, optional): By default, the losses are averaged
|
|
over observations for each minibatch. If size_average
|
|
is False, the losses are summed for each minibatch. Default: ``True``
|
|
ignore_index (int, optional): Specifies a target value that is ignored
|
|
and does not contribute to the input gradient. When size_average is
|
|
True, the loss is averaged over non-ignored targets. Default: -100
|
|
|
|
Example::
|
|
|
|
>>> # input is of size N x C = 3 x 5
|
|
>>> input = autograd.Variable(torch.randn(3, 5))
|
|
>>> # each element in target has to have 0 <= value < C
|
|
>>> target = autograd.Variable(torch.LongTensor([1, 0, 4]))
|
|
>>> output = F.nll_loss(F.log_softmax(input), target)
|
|
>>> output.backward()
|
|
"""
|
|
dim = input.dim()
|
|
if torch.is_tensor(weight):
|
|
weight = Variable(weight)
|
|
if dim == 2:
|
|
return torch._C._nn.nll_loss(input, target, weight, size_average, ignore_index, reduce)
|
|
elif dim == 4:
|
|
return torch._C._nn.nll_loss2d(input, target, weight, size_average, ignore_index, reduce)
|
|
else:
|
|
raise ValueError('Expected 2 or 4 dimensions (got {})'.format(dim))
|
|
|
|
|
|
def poisson_nll_loss(input, target, log_input=True, full=False, size_average=True, eps=1e-8):
|
|
r"""Poisson negative log likelihood loss.
|
|
|
|
See :class:`~torch.nn.PoissonNLLLoss` for details.
|
|
|
|
Args:
|
|
input: expectation of underlying Poisson distribution.
|
|
target: random sample :math:`target \sim Pois(input)`.
|
|
log_input: if ``True`` the loss is computed as
|
|
`exp(input) - target * input`, if ``False`` then loss is
|
|
`input - target * log(input+eps)`. Default: ``True``
|
|
full: whether to compute full loss, i. e. to add the Stirling
|
|
approximation term. Default: ``False``
|
|
`target * log(target) - target + 0.5 * log(2 * pi * target)`.
|
|
size_average: By default, the losses are averaged over observations for
|
|
each minibatch. However, if the field sizeAverage is set to False,
|
|
the losses are instead summed for each minibatch. Default: ``True``
|
|
eps (float, optional): Small value to avoid evaluation of log(0) when
|
|
log_input=False. Default: 1e-8
|
|
"""
|
|
if log_input:
|
|
loss = torch.exp(input) - target * input
|
|
else:
|
|
loss = input - target * torch.log(input + eps)
|
|
if full:
|
|
mask = target > 1
|
|
loss[mask] += (target * torch.log(target) - target + 0.5 * torch.log(2 * math.pi * target))[mask]
|
|
if size_average:
|
|
return torch.mean(loss)
|
|
else:
|
|
return torch.sum(loss)
|
|
|
|
|
|
kl_div = _add_docstr(torch._C._nn.kl_div, r"""
|
|
kl_div(input, target, size_average=True) -> Variable
|
|
|
|
The `Kullback-Leibler divergence`_ Loss.
|
|
|
|
See :class:`~torch.nn.KLDivLoss` for details.
|
|
|
|
Args:
|
|
input: Variable of arbitrary shape
|
|
target: Variable of the same shape as input
|
|
size_average: if ``True`` the output is divided by the number of elements
|
|
in input tensor. Default: ``True``
|
|
reduce (bool, optional): By default, the losses are averaged
|
|
over observations for each minibatch, or summed, depending on
|
|
size_average. When reduce is False, returns a loss per batch
|
|
element instead and ignores size_average. Default: ``True``
|
|
|
|
""")
|
|
|
|
|
|
def cross_entropy(input, target, weight=None, size_average=True, ignore_index=-100, reduce=True):
|
|
r"""This criterion combines `log_softmax` and `nll_loss` in a single
|
|
function.
|
|
|
|
See :class:`~torch.nn.CrossEntropyLoss` for details.
|
|
|
|
Args:
|
|
input: Variable :math:`(N, C)` where `C = number of classes`
|
|
target: Variable :math:`(N)` where each value is
|
|
`0 <= targets[i] <= C-1`
|
|
weight (Tensor, optional): a manual rescaling weight given to each
|
|
class. If given, has to be a Tensor of size `C`
|
|
size_average (bool, optional): By default, the losses are averaged
|
|
over observations for each minibatch. However, if the field
|
|
sizeAverage is set to False, the losses are instead summed
|
|
for each minibatch. Ignored if reduce is False. Default: ``True``
|
|
ignore_index (int, optional): Specifies a target value that is ignored
|
|
and does not contribute to the input gradient. When size_average is
|
|
True, the loss is averaged over non-ignored targets. Default: -100
|
|
reduce (bool, optional): By default, the losses are averaged or summed over
|
|
observations for each minibatch depending on size_average. When reduce
|
|
is False, returns a loss per batch element instead and ignores
|
|
size_average. Default: ``True``
|
|
|
|
Examples::
|
|
|
|
>>> input = autograd.Variable(torch.randn(3, 5), requires_grad=True)
|
|
>>> target = autograd.Variable(torch.LongTensor(3).random_(5))
|
|
>>> loss = F.cross_entropy(input, target)
|
|
>>> loss.backward()
|
|
"""
|
|
return nll_loss(log_softmax(input, 1), target, weight, size_average, ignore_index, reduce)
|
|
|
|
|
|
def binary_cross_entropy(input, target, weight=None, size_average=True):
|
|
r"""Function that measures the Binary Cross Entropy
|
|
between the target and the output.
|
|
|
|
See :class:`~torch.nn.BCELoss` for details.
|
|
|
|
Args:
|
|
input: Variable of arbitrary shape
|
|
target: Variable of the same shape as input
|
|
weight (Variable, optional): a manual rescaling weight
|
|
if provided it's repeated to match input tensor shape
|
|
size_average (bool, optional): By default, the losses are averaged
|
|
over observations for each minibatch. However, if the field
|
|
sizeAverage is set to False, the losses are instead summed
|
|
for each minibatch. Default: ``True``
|
|
|
|
Examples::
|
|
|
|
>>> input = autograd.Variable(torch.randn(3), requires_grad=True)
|
|
>>> target = autograd.Variable(torch.LongTensor(3).random_(2))
|
|
>>> loss = F.binary_cross_entropy(F.sigmoid(input), target)
|
|
>>> loss.backward()
|
|
"""
|
|
if not (target.size() == input.size()):
|
|
warnings.warn("Using a target size ({}) that is different to the input size ({}) is deprecated. "
|
|
"Please ensure they have the same size.".format(target.size(), input.size()))
|
|
if input.nelement() != target.nelement():
|
|
raise ValueError("Target and input must have the same number of elements. target nelement ({}) "
|
|
"!= input nelement ({})".format(target.nelement(), input.nelement()))
|
|
|
|
if weight is not None:
|
|
new_size = _infer_size(target.size(), weight.size())
|
|
weight = weight.expand(new_size)
|
|
if torch.is_tensor(weight):
|
|
weight = Variable(weight)
|
|
|
|
return torch._C._nn.binary_cross_entropy(input, target, weight, size_average)
|
|
|
|
|
|
def binary_cross_entropy_with_logits(input, target, weight=None, size_average=True):
|
|
r"""Function that measures Binary Cross Entropy between target and output
|
|
logits.
|
|
|
|
See :class:`~torch.nn.BCEWithLogitsLoss` for details.
|
|
|
|
Args:
|
|
input: Variable of arbitrary shape
|
|
target: Variable of the same shape as input
|
|
weight (Variable, optional): a manual rescaling weight
|
|
if provided it's repeated to match input tensor shape
|
|
size_average (bool, optional): By default, the losses are averaged
|
|
over observations for each minibatch. However, if the field
|
|
sizeAverage is set to False, the losses are instead summed
|
|
for each minibatch. Default: ``True``
|
|
|
|
Examples::
|
|
|
|
>>> input = autograd.Variable(torch.randn(3), requires_grad=True)
|
|
>>> target = autograd.Variable(torch.FloatTensor(3).random_(2))
|
|
>>> loss = F.binary_cross_entropy_with_logits(input, target)
|
|
>>> loss.backward()
|
|
"""
|
|
if not (target.size() == input.size()):
|
|
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
|
|
|
|
max_val = (-input).clamp(min=0)
|
|
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log()
|
|
|
|
if weight is not None:
|
|
loss = loss * weight
|
|
|
|
if size_average:
|
|
return loss.mean()
|
|
else:
|
|
return loss.sum()
|
|
|
|
|
|
def _pointwise_loss(lambd, lambd_optimized, input, target, size_average=True, reduce=True):
|
|
if target.requires_grad:
|
|
d = lambd(input, target)
|
|
if not reduce:
|
|
return d
|
|
return torch.mean(d) if size_average else torch.sum(d)
|
|
else:
|
|
return lambd_optimized(input, target, size_average, reduce)
|
|
|
|
|
|
smooth_l1_loss = _add_docstr(torch._C._nn.smooth_l1_loss, r"""
|
|
smooth_l1_loss(input, target, size_average=True) -> Variable
|
|
|
|
Function that uses a squared term if the absolute
|
|
element-wise error falls below 1 and an L1 term otherwise.
|
|
|
|
See :class:`~torch.nn.SmoothL1Loss` for details.
|
|
""")
|
|
|
|
|
|
def l1_loss(input, target, size_average=True, reduce=True):
|
|
"""
|
|
l1_loss(input, target, size_average=True, reduce=True) -> Variable
|
|
|
|
Function that takes the mean element-wise absolute value difference.
|
|
|
|
See :class:`~torch.nn.L1Loss` for details.
|
|
"""
|
|
return _pointwise_loss(lambda a, b: torch.abs(a - b), torch._C._nn.l1_loss,
|
|
input, target, size_average, reduce)
|
|
|
|
|
|
def mse_loss(input, target, size_average=True, reduce=True):
|
|
"""
|
|
mse_loss(input, target, size_average=True, reduce=True) -> Variable
|
|
|
|
Measures the element-wise mean squared error.
|
|
|
|
See :class:`~torch.nn.MSELoss` for details.
|
|
"""
|
|
return _pointwise_loss(lambda a, b: (a - b) ** 2, torch._C._nn.mse_loss,
|
|
input, target, size_average, reduce)
|
|
|
|
|
|
def margin_ranking_loss(input1, input2, target, margin=0, size_average=True):
|
|
"""margin_ranking_loss(input1, input2, target, margin=0, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.MarginRankingLoss` for details.
|
|
"""
|
|
return _functions.loss.MarginRankingLoss.apply(input1, input2, target, margin, size_average)
|
|
|
|
|
|
def hinge_embedding_loss(input, target, margin=1.0, size_average=True):
|
|
"""hinge_embedding_loss(input, target, margin=1.0, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.HingeEmbeddingLoss` for details.
|
|
"""
|
|
return _functions.loss.HingeEmbeddingLoss.apply(input, target, margin, size_average)
|
|
|
|
|
|
multilabel_margin_loss = _add_docstr(torch._C._nn.multilabel_margin_loss, r"""
|
|
multilabel_margin_loss(input, target, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.MultiLabelMarginLoss` for details.
|
|
""")
|
|
|
|
soft_margin_loss = _add_docstr(torch._C._nn.soft_margin_loss, r"""
|
|
soft_margin_loss(input, target, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.SoftMarginLoss` for details.
|
|
""")
|
|
|
|
|
|
def multilabel_soft_margin_loss(input, target, weight=None, size_average=True):
|
|
"""multilabel_soft_margin_loss(input, target, weight=None, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details.
|
|
"""
|
|
input = torch.sigmoid(input)
|
|
return binary_cross_entropy(input, target, weight, size_average)
|
|
|
|
|
|
def cosine_embedding_loss(input1, input2, target, margin=0, size_average=True):
|
|
"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.CosineEmbeddingLoss` for details.
|
|
"""
|
|
return _functions.loss.CosineEmbeddingLoss.apply(input1, input2, target, margin, size_average)
|
|
|
|
|
|
def multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=True):
|
|
"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=True) -> Variable
|
|
|
|
See :class:`~torch.nn.MultiMarginLoss` for details.
|
|
"""
|
|
if p != 1 and p != 2:
|
|
raise ValueError('only p == 1 and p == 2 supported')
|
|
if weight is not None and weight.dim() != 1:
|
|
raise ValueError('weight must be one-dimensional')
|
|
|
|
return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, size_average)
|
|
|
|
|
|
def pixel_shuffle(input, upscale_factor):
|
|
r"""Rearranges elements in a tensor of shape ``[*, C*r^2, H, W]`` to a
|
|
tensor of shape ``[C, H*r, W*r]``.
|
|
|
|
See :class:`~torch.nn.PixelShuffle` for details.
|
|
|
|
Args:
|
|
input (Variable): Input
|
|
upscale_factor (int): factor to increase spatial resolution by
|
|
|
|
Examples::
|
|
|
|
>>> ps = nn.PixelShuffle(3)
|
|
>>> input = autograd.Variable(torch.Tensor(1, 9, 4, 4))
|
|
>>> output = ps(input)
|
|
>>> print(output.size())
|
|
torch.Size([1, 1, 12, 12])
|
|
"""
|
|
batch_size, channels, in_height, in_width = input.size()
|
|
channels //= upscale_factor ** 2
|
|
|
|
out_height = in_height * upscale_factor
|
|
out_width = in_width * upscale_factor
|
|
|
|
input_view = input.contiguous().view(
|
|
batch_size, channels, upscale_factor, upscale_factor,
|
|
in_height, in_width)
|
|
|
|
shuffle_out = input_view.permute(0, 1, 4, 2, 5, 3).contiguous()
|
|
return shuffle_out.view(batch_size, channels, out_height, out_width)
|
|
|
|
|
|
def upsample(input, size=None, scale_factor=None, mode='nearest'):
|
|
r"""Upsamples the input to either the given :attr:`size` or the given
|
|
:attr:`scale_factor`
|
|
|
|
The algorithm used for upsampling is determined by :attr:`mode`.
|
|
|
|
Currently temporal, spatial and volumetric upsampling are supported, i.e.
|
|
expected inputs are 3-D, 4-D or 5-D in shape.
|
|
|
|
The input dimensions are interpreted in the form:
|
|
`mini-batch x channels x [depth] x [height] x width`
|
|
|
|
The modes available for upsampling are: `nearest`, `linear` (3D-only),
|
|
`bilinear` (4D-only), `trilinear` (5D-only)
|
|
|
|
Args:
|
|
input (Variable): input
|
|
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
|
output spatial size.
|
|
scale_factor (int): multiplier for spatial size. Has to be an integer.
|
|
mode (string): algorithm used for upsampling:
|
|
'nearest' | 'linear' | 'bilinear' | 'trilinear'. Default: 'nearest'
|
|
"""
|
|
if input.dim() == 3 and mode == 'nearest':
|
|
return _functions.thnn.UpsamplingNearest1d.apply(input, _single(size), scale_factor)
|
|
elif input.dim() == 4 and mode == 'nearest':
|
|
return _functions.thnn.UpsamplingNearest2d.apply(input, _pair(size), scale_factor)
|
|
elif input.dim() == 5 and mode == 'nearest':
|
|
return _functions.thnn.UpsamplingNearest3d.apply(input, _triple(size), scale_factor)
|
|
elif input.dim() == 3 and mode == 'linear':
|
|
return _functions.thnn.UpsamplingLinear1d.apply(input, _single(size), scale_factor)
|
|
elif input.dim() == 3 and mode == 'bilinear':
|
|
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
|
|
elif input.dim() == 3 and mode == 'trilinear':
|
|
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
|
|
elif input.dim() == 4 and mode == 'linear':
|
|
raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
|
|
elif input.dim() == 4 and mode == 'bilinear':
|
|
return _functions.thnn.UpsamplingBilinear2d.apply(input, _pair(size), scale_factor)
|
|
elif input.dim() == 4 and mode == 'trilinear':
|
|
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
|
|
elif input.dim() == 5 and mode == 'linear':
|
|
raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
|
|
elif input.dim() == 5 and mode == 'bilinear':
|
|
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
|
|
elif input.dim() == 5 and mode == 'trilinear':
|
|
return _functions.thnn.UpsamplingTrilinear3d.apply(input, _triple(size), scale_factor)
|
|
else:
|
|
raise NotImplementedError("Input Error: Only 3D, 4D and 5D input Tensors supported"
|
|
" (got {}D) for the modes: nearest | linear | bilinear | trilinear"
|
|
" (got {})".format(input.dim(), mode))
|
|
|
|
|
|
def upsample_nearest(input, size=None, scale_factor=None):
|
|
r"""Upsamples the input, using nearest neighbours' pixel values.
|
|
|
|
**Note:: This function is deprecated. Use nn.functional.upsample instead**
|
|
|
|
Currently spatial and volumetric upsampling are supported (i.e. expected
|
|
inputs are 4 or 5 dimensional).
|
|
|
|
Args:
|
|
input (Variable): input
|
|
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia
|
|
size.
|
|
scale_factor (int): multiplier for spatial size. Has to be an integer.
|
|
"""
|
|
# DeprecationWarning is ignored by default
|
|
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.upsample instead.")
|
|
return upsample(input, size, scale_factor, mode='nearest')
|
|
|
|
|
|
def upsample_bilinear(input, size=None, scale_factor=None):
|
|
r"""Upscales the input, using bilinear upsampling.
|
|
|
|
**Note:: This function is deprecated. Use nn.functional.upsample instead**
|
|
|
|
Expected inputs are spatial (4 dimensional). Use upsample_trilinear fo
|
|
volumetric (5 dimensional) inputs.
|
|
|
|
Args:
|
|
input (Variable): input
|
|
size (int or Tuple[int, int]): output spatial size.
|
|
scale_factor (int or Tuple[int, int]): multiplier for spatial size
|
|
"""
|
|
# DeprecationWarning is ignored by default
|
|
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.upsample instead.")
|
|
return upsample(input, size, scale_factor, mode='bilinear')
|
|
|
|
|
|
def grid_sample(input, grid, mode='bilinear', padding_mode='zeros'):
|
|
r"""Given an :attr:`input` and a flow-field :attr:`grid`, computes the
|
|
`output` using input pixel locations from the grid.
|
|
|
|
Uses bilinear interpolation to sample the input pixels.
|
|
Currently, only spatial (4 dimensional) inputs are supported.
|
|
|
|
For each output location, :attr:`grid` has `x` and `y`
|
|
input pixel locations which are used to compute output.
|
|
|
|
:attr:`grid` has values in the range of `[-1, 1]`. This is because the
|
|
pixel locations are normalized by the input height and width.
|
|
|
|
For example, values: x: -1, y: -1 is the left-top pixel of the input
|
|
values: x: 1, y: 1 is the right-bottom pixel of the input
|
|
|
|
If :attr:`grid` has values outside the range of `[-1, 1]`, those locations
|
|
are handled as defined by `padding_mode`. Options are `zeros` or `border`,
|
|
defining those locations to use 0 or image border values as contribution
|
|
to the bilinear interpolation.
|
|
|
|
.. Note:: This function is used in building Spatial Transformer Networks
|
|
|
|
Args:
|
|
input (Variable): input batch of images (N x C x IH x IW)
|
|
grid (Variable): flow-field of size (N x OH x OW x 2)
|
|
padding_mode (str): padding mode for outside grid values
|
|
'zeros' | 'border'. Default: 'zeros'
|
|
|
|
Returns:
|
|
output (Variable): output Tensor
|
|
|
|
"""
|
|
batch_size, channels, in_height, in_width = input.size()
|
|
return vision.grid_sampler(input, grid, padding_mode)
|
|
|
|
|
|
def affine_grid(theta, size):
|
|
r"""Generates a 2d flow field, given a batch of affine matrices :attr:`theta`
|
|
Generally used in conjunction with :func:`grid_sample` to
|
|
implement Spatial Transformer Networks.
|
|
|
|
Args:
|
|
theta (Variable): input batch of affine matrices (N x 2 x 3)
|
|
size (torch.Size): the target output image size (N x C x H x W)
|
|
Example: torch.Size((32, 3, 24, 24))
|
|
|
|
Returns:
|
|
output (Variable): output Tensor of size (N x H x W x 2)
|
|
"""
|
|
return vision.affine_grid_generator(theta, size)
|
|
|
|
|
|
def pad(input, pad, mode='constant', value=0):
|
|
r"""Pads tensor.
|
|
|
|
Nd constant padding: The number of dimensions to pad is
|
|
len(padding) // 2 and the dimensions that gets padded begins with the
|
|
last dimension and moves forward. See below for examples.
|
|
|
|
1D, 2D and 3D "reflect"/"replicate" padding:
|
|
1D: 3D input with padding in form (pad_l, pad_r)
|
|
2D: 4D input tensor pad should be in form
|
|
(pad_l, pad_r, pad_t, pad_b ).
|
|
3D: 5D pad (pleft, pright, ptop, pbottom, pfront, pback). No "reflect"
|
|
implementation
|
|
|
|
Args:
|
|
input (Variable): Nd tensor
|
|
pad (tuple): m-elem tuple, where m // 2 <= input dimensions and m % 2 == 0
|
|
mode: 'constant', 'reflect' or 'replicate'. Default: 'constant'
|
|
value: fill value for 'constant' padding. Default: 0
|
|
|
|
Examples::
|
|
|
|
>>> t4d = torch.Tensor(3, 3, 4, 2)
|
|
>>> p1d = (1, 1) # pad last dim by 1 on each side
|
|
>>> out = F.pad(t4d, p1d, "constant", 0)
|
|
>>> print(out.data.size())
|
|
torch.Size([3, 3, 4, 4])
|
|
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
|
|
>>> out = F.pad(t4d, p2d, "constant", 0)
|
|
>>> print(out.data.size())
|
|
torch.Size([3, 3, 8, 4])
|
|
>>> t4d = torch.Tensor(3, 3, 4, 2)
|
|
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
|
|
>>> out = F.pad(t4d, p3d, "constant", 0)
|
|
>>> print(out.data.size())
|
|
torch.Size([3, 9, 7, 3])
|
|
"""
|
|
assert len(pad) % 2 == 0, 'Padding length must be divisible by 2'
|
|
assert len(pad) // 2 <= input.dim(), 'Padding length too large'
|
|
if mode == 'constant':
|
|
return ConstantPadNd.apply(input, pad, value)
|
|
elif input.dim() == 3:
|
|
assert len(pad) == 2, '3D tensors expect 2 values for padding'
|
|
if mode == 'reflect':
|
|
return _functions.thnn.ReflectionPad1d.apply(input, *pad)
|
|
elif mode == 'replicate':
|
|
return _functions.thnn.ReplicationPad1d.apply(input, *pad)
|
|
elif input.dim() == 4:
|
|
assert len(pad) == 4, '4D tensors expect 4 values for padding'
|
|
if mode == 'reflect':
|
|
return _functions.thnn.ReflectionPad2d.apply(input, *pad)
|
|
elif mode == 'replicate':
|
|
return _functions.thnn.ReplicationPad2d.apply(input, *pad)
|
|
elif input.dim() == 5:
|
|
assert len(pad) == 6, '5D tensors expect 6 values for padding'
|
|
if mode == 'reflect':
|
|
raise NotImplementedError
|
|
elif mode == 'replicate':
|
|
return _functions.thnn.ReplicationPad3d.apply(input, *pad)
|
|
else:
|
|
raise NotImplementedError("Only 3D, 4D, 5D padding with non-constant padding are supported for now")
|
|
|
|
|
|
# distance
|
|
|
|
def pairwise_distance(x1, x2, p=2, eps=1e-6):
|
|
r"""
|
|
Computes the batchwise pairwise distance between vectors v1,v2:
|
|
|
|
.. math ::
|
|
\Vert x \Vert _p := \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}
|
|
|
|
Args:
|
|
x1: first input tensor
|
|
x2: second input tensor
|
|
p: the norm degree. Default: 2
|
|
eps (float, optional): Small value to avoid division by zero. Default: 1e-6
|
|
|
|
Shape:
|
|
- Input: :math:`(N, D)` where `D = vector dimension`
|
|
- Output: :math:`(N, 1)`
|
|
|
|
Example::
|
|
|
|
>>> input1 = autograd.Variable(torch.randn(100, 128))
|
|
>>> input2 = autograd.Variable(torch.randn(100, 128))
|
|
>>> output = F.pairwise_distance(input1, input2, p=2)
|
|
>>> output.backward()
|
|
"""
|
|
assert x1.size() == x2.size(), "Input sizes must be equal."
|
|
assert x1.dim() == 2, "Input must be a 2D matrix."
|
|
diff = torch.abs(x1 - x2)
|
|
out = torch.pow(diff + eps, p).sum(dim=1, keepdim=True)
|
|
return torch.pow(out, 1. / p)
|
|
|
|
|
|
def cosine_similarity(x1, x2, dim=1, eps=1e-8):
|
|
r"""Returns cosine similarity between x1 and x2, computed along dim.
|
|
|
|
.. math ::
|
|
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}
|
|
|
|
Args:
|
|
x1 (Variable): First input.
|
|
x2 (Variable): Second input (of size matching x1).
|
|
dim (int, optional): Dimension of vectors. Default: 1
|
|
eps (float, optional): Small value to avoid division by zero.
|
|
Default: 1e-8
|
|
|
|
Shape:
|
|
- Input: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`.
|
|
- Output: :math:`(\ast_1, \ast_2)` where 1 is at position `dim`.
|
|
|
|
Example::
|
|
|
|
>>> input1 = autograd.Variable(torch.randn(100, 128))
|
|
>>> input2 = autograd.Variable(torch.randn(100, 128))
|
|
>>> output = F.cosine_similarity(input1, input2)
|
|
>>> print(output)
|
|
"""
|
|
w12 = torch.sum(x1 * x2, dim)
|
|
w1 = torch.norm(x1, 2, dim)
|
|
w2 = torch.norm(x2, 2, dim)
|
|
return w12 / (w1 * w2).clamp(min=eps)
|
|
|
|
|
|
def triplet_margin_loss(anchor, positive, negative, margin=1.0, p=2, eps=1e-6, swap=False):
|
|
r"""Creates a criterion that measures the triplet loss given an input
|
|
tensors x1, x2, x3 and a margin with a value greater than 0.
|
|
This is used for measuring a relative similarity between samples. A triplet
|
|
is composed by `a`, `p` and `n`: anchor, positive examples and negative
|
|
example respectively. The shape of all input variables should be
|
|
:math:`(N, D)`.
|
|
|
|
The distance swap is described in detail in the paper `Learning shallow
|
|
convolutional feature descriptors with triplet losses`_ by
|
|
V. Balntas, E. Riba et al.
|
|
|
|
.. math::
|
|
L(a, p, n) = \frac{1}{N} \left( \sum_{i=1}^N \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\} \right)
|
|
|
|
where :math:`d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p`.
|
|
|
|
Args:
|
|
anchor: anchor input tensor
|
|
positive: positive input tensor
|
|
negative: negative input tensor
|
|
margin: the margin value. Default: 1
|
|
p: the norm degree. Default: 2
|
|
eps: small epsilon value to avoid numerical issues. Default: 1e-6
|
|
swap: compute distance swap. Default: ``False``
|
|
|
|
Shape:
|
|
- Input: :math:`(N, D)` where `D = vector dimension`
|
|
- Output: :math:`(N, 1)`
|
|
|
|
Example::
|
|
|
|
>>> input1 = autograd.Variable(torch.randn(100, 128))
|
|
>>> input2 = autograd.Variable(torch.randn(100, 128))
|
|
>>> input3 = autograd.Variable(torch.randn(100, 128))
|
|
>>> output = F.triplet_margin_loss(input1, input2, input3, p=2)
|
|
>>> output.backward()
|
|
|
|
.. _Learning shallow convolutional feature descriptors with triplet losses:
|
|
http://www.iis.ee.ic.ac.uk/%7Evbalnt/shallow_descr/TFeat_paper.pdf
|
|
"""
|
|
assert anchor.size() == positive.size(), "Input sizes between positive and negative must be equal."
|
|
assert anchor.size() == negative.size(), "Input sizes between anchor and negative must be equal."
|
|
assert positive.size() == negative.size(), "Input sizes between positive and negative must be equal."
|
|
assert anchor.dim() == 2, "Input must be a 2D matrix."
|
|
assert margin > 0.0, 'Margin should be positive value.'
|
|
d_p = pairwise_distance(anchor, positive, p, eps)
|
|
d_n = pairwise_distance(anchor, negative, p, eps)
|
|
if swap:
|
|
d_s = pairwise_distance(positive, negative, p, eps)
|
|
d_n = torch.min(d_n, d_s)
|
|
|
|
dist_hinge = torch.clamp(margin + d_p - d_n, min=0.0)
|
|
loss = torch.mean(dist_hinge)
|
|
return loss
|
|
|
|
|
|
def normalize(input, p=2, dim=1, eps=1e-12):
|
|
r"""Performs :math:`L_p` normalization of inputs over specified dimension.
|
|
|
|
Does:
|
|
|
|
.. math::
|
|
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}
|
|
|
|
for each subtensor v over dimension dim of input. Each subtensor is
|
|
flattened into a vector, i.e. :math:`\lVert v \rVert_p` is not a matrix
|
|
norm.
|
|
|
|
With default arguments normalizes over the second dimension with Euclidean
|
|
norm.
|
|
|
|
Args:
|
|
input: input tensor of any shape
|
|
p (float): the exponent value in the norm formulation. Default: 2
|
|
dim (int): the dimension to reduce. Default: 1
|
|
eps (float): small value to avoid division by zero. Default: 1e-12
|
|
"""
|
|
return input / input.norm(p, dim, True).clamp(min=eps).expand_as(input)
|