mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call. Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676 Approved by: https://github.com/ezyang
120 lines
5.7 KiB
Python
120 lines
5.7 KiB
Python
import torch
|
|
import copy
|
|
from torch.fx import GraphModule
|
|
from torch.fx.graph import Graph
|
|
from typing import Union, Dict, Any, Set
|
|
|
|
__all__ = [
|
|
"FusedGraphModule",
|
|
"ObservedGraphModule",
|
|
"ObservedStandaloneGraphModule",
|
|
"QuantizedGraphModule",
|
|
]
|
|
|
|
class FusedGraphModule(GraphModule):
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
self.preserved_attr_names = preserved_attr_names
|
|
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
|
|
# GraphModule does not copy attributes which are not in the __dict__
|
|
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
|
# to copy the quantization specific attributes correctly.
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return FusedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
|
|
|
class ObservedGraphModule(GraphModule):
|
|
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
self.preserved_attr_names = {
|
|
'_activation_post_process_map',
|
|
'_activation_post_process_indexes',
|
|
'_patterns',
|
|
'_node_name_to_qconfig',
|
|
'_prepare_custom_config',
|
|
'_equalization_node_name_to_qconfig',
|
|
'_node_name_to_scope',
|
|
'_qconfig_mapping',
|
|
'_is_qat',
|
|
'_observed_node_names'}.union(preserved_attr_names)
|
|
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
|
|
# GraphModule does not copy attributes which are not in the __dict__
|
|
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
|
# to copy the quantization specific attributes correctly.
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return ObservedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
|
|
|
def _is_observed_module(module: Any) -> bool:
|
|
return hasattr(module, "meta") and "_observed_graph_module_attrs" in module.meta
|
|
|
|
def _get_observed_graph_module_attr(model: Union[torch.nn.Module, GraphModule], attr_name: str) -> Any:
|
|
if hasattr(model, "meta") and "_observed_graph_module_attrs" in model.meta: # type: ignore[operator, index]
|
|
return getattr(model.meta["_observed_graph_module_attrs"], attr_name) # type: ignore[index]
|
|
return None
|
|
|
|
class ObservedStandaloneGraphModule(ObservedGraphModule):
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
preserved_attr_names = preserved_attr_names.union({
|
|
"_standalone_module_input_quantized_idxs",
|
|
"_standalone_module_output_quantized_idxs"})
|
|
super().__init__(root, graph, preserved_attr_names)
|
|
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return ObservedStandaloneGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
|
|
|
def _is_observed_standalone_module(module: Any) -> bool:
|
|
return _is_observed_module(module) and module.meta["_observed_graph_module_attrs"].is_observed_standalone_module
|
|
|
|
def _save_packed_weight(self, destination, prefix, keep_vars):
|
|
for attr_name in dir(self):
|
|
if "_packed_weight" in attr_name and \
|
|
isinstance(getattr(self, attr_name), torch._C.ScriptObject): # type: ignore[attr-defined]
|
|
packed_weight = getattr(self, attr_name)
|
|
destination[prefix + attr_name] = packed_weight
|
|
|
|
class QuantizedGraphModule(GraphModule):
|
|
""" This class is created to make sure PackedParams
|
|
(e.g. LinearPackedParams, Conv2dPackedParams) to appear in state_dict
|
|
so that we can serialize and deserialize quantized graph module with
|
|
torch.save(m.state_dict()) and m.load_state_dict(state_dict)
|
|
"""
|
|
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
|
self.preserved_attr_names = preserved_attr_names
|
|
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
|
super().__init__(root, graph)
|
|
for attr in preserved_attrs:
|
|
setattr(self, attr, preserved_attrs[attr])
|
|
self._register_state_dict_hook(_save_packed_weight)
|
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
|
missing_keys, unexpected_keys, error_msgs):
|
|
attrs_to_pop = []
|
|
for attr_name in state_dict:
|
|
if attr_name.startswith("_packed_weight") and isinstance(state_dict[attr_name], torch._C.ScriptObject): # type: ignore[attr-defined] # noqa: B950
|
|
setattr(self, attr_name, state_dict[attr_name])
|
|
attrs_to_pop.append(attr_name)
|
|
|
|
# pop the packed param attributesn
|
|
for attr_name in attrs_to_pop:
|
|
state_dict.pop(attr_name)
|
|
|
|
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
|
|
|
|
|
def __deepcopy__(self, memo):
|
|
fake_mod = torch.nn.Module()
|
|
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
|
return QuantizedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|