pytorch/torch/ao/quantization/fx/fuse.py
Jerry Zhang 2394e6baa9 [quant][fx] Change prepare_fx and convert_fx to preserve the GraphModule type of input (#94412)
Summary:
Previously prepare_fx returns an ObservedGraphModule and convert_fx returns a QuantizedGraphModule,
this is to preserve the attributes since torch.fx.GraphModule did not preserve them, after https://github.com/pytorch/pytorch/pull/92062
we are preserving `model.meta`, so we can store the attributes in model.meta now to preserve them.

With this, we don't need to create a new type of GraphModule in these functions and can use GraphModule directly, this
is useful for quantization in pytorch 2.0 flow, if other transformations are using GraphModule as well, the quantization passes will be composable with them

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps
python test/test_quantization.py TestQuantizeFxModels
python test/test_quantization.py TestQuantizePT2E

Imported from OSS

Differential Revision: D42979722

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94412
Approved by: https://github.com/vkuzo
2023-02-09 23:03:23 +00:00

162 lines
6.4 KiB
Python

from torch.fx import (
GraphModule,
Node,
map_arg
)
from torch.fx.graph import Graph
from .match_utils import (
_is_match,
MatchAllNode,
)
from .pattern_utils import (
_sorted_patterns_dict,
)
from ..backend_config import (
BackendConfig,
get_native_backend_config,
)
from ..backend_config.utils import (
get_fuser_method_mapping,
get_fusion_pattern_to_root_node_getter,
get_fusion_pattern_to_extra_inputs_getter,
)
from .custom_config import FuseCustomConfig
from .fuse_handler import (
_get_fusion_pattern_to_fuse_handler_cls,
FuseHandler,
)
from typing import Any, Callable, Dict, List, Tuple, Union
import warnings
from torch.ao.quantization.utils import Pattern, NodePattern
__all__ = [
"fuse",
# TODO: We should make this private in the future
# This is currently needed for test_public_bindings for some reason
"FuseHandler",
]
def fuse(
model: GraphModule,
is_qat: bool,
fuse_custom_config: Union[FuseCustomConfig, Dict[str, Any], None] = None,
backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
) -> GraphModule:
if fuse_custom_config is None:
fuse_custom_config = FuseCustomConfig()
if isinstance(fuse_custom_config, Dict):
warnings.warn(
"Passing a fuse_custom_config_dict to fuse is deprecated and will not be supported "
"in a future version. Please pass in a FuseCustomConfig instead.")
fuse_custom_config = FuseCustomConfig.from_dict(fuse_custom_config)
if isinstance(backend_config, Dict):
warnings.warn(
"Passing a backend_config_dict to prepare is deprecated and will not be supported "
"in a future version. Please pass in a BackendConfig instead.")
backend_config = BackendConfig.from_dict(backend_config)
named_modules = dict(model.named_modules())
if backend_config is None:
backend_config = get_native_backend_config()
fusion_pattern_to_fuse_handler_cls = _sorted_patterns_dict(_get_fusion_pattern_to_fuse_handler_cls(backend_config))
fuser_method_mapping = get_fuser_method_mapping(backend_config)
fusion_pattern_to_root_node_getter = get_fusion_pattern_to_root_node_getter(backend_config)
fusion_pattern_to_extra_inputs_getter = get_fusion_pattern_to_extra_inputs_getter(backend_config)
# find fusion
fusion_pairs = _find_matches(
model, model.graph, fusion_pattern_to_fuse_handler_cls)
# TODO: change this to inplace changes to graph, since we no longer construct
# new GraphModule anymore
fused_graph = Graph()
env: Dict[Any, Any] = {}
def load_arg(a):
return map_arg(a, lambda node: env[node.name])
def default_root_node_getter(node_pattern):
while not isinstance(node_pattern[-1], Node):
node_pattern = node_pattern[-1]
return node_pattern[-1]
for node in model.graph.nodes:
maybe_last_node, pattern, matched_node_pattern, obj, node_to_subpattern = \
fusion_pairs.get(node.name, (None, None, None, None, None))
# get the corresponding subpattern for the current node
if node_to_subpattern is not None:
node_subpattern = node_to_subpattern.get(node, None)
else:
node_subpattern = None
if maybe_last_node is node:
assert obj is not None
root_node_getter = fusion_pattern_to_root_node_getter.get(pattern, default_root_node_getter)
root_node = root_node_getter(matched_node_pattern) # type: ignore[index]
extra_inputs_getter = fusion_pattern_to_extra_inputs_getter.get(pattern, None)
extra_inputs = []
if extra_inputs_getter is not None:
extra_inputs = extra_inputs_getter(matched_node_pattern)
# TODO: add validation that root_node is a module and has the same type
# as the root_module in the configuration
env[node.name] = obj.fuse(
load_arg, named_modules, fused_graph, root_node, extra_inputs, matched_node_pattern, # type: ignore[arg-type]
fuse_custom_config, fuser_method_mapping, is_qat)
elif maybe_last_node is None or node_subpattern is MatchAllNode:
env[node.name] = fused_graph.node_copy(node, load_arg)
# node matched in patterns and is not root is removed here
model = GraphModule(model, fused_graph)
return model
def _find_matches(
root: GraphModule,
graph: Graph,
pattern_to_fuse_handler_cls: Dict[Pattern, Callable],
) -> Dict[str, Tuple[Node, Pattern, NodePattern, FuseHandler, Dict[Node, Any]]]:
modules = dict(root.named_modules())
# node name -> (root_node, match_value)
match_map : Dict[
str, Tuple[Node, Pattern, NodePattern, FuseHandler, Dict[Node, Any]]] = {}
# a map from node to the matched subpattern
node_to_subpattern: Dict[Node, Any] = {}
# TODO: dedup with quantization matching function in match_utils.py
def apply_match(pattern, node, match, matched_node_pattern, node_to_subpattern):
if isinstance(pattern, tuple):
s, *args = pattern
current_node_pattern: List[Node] = []
apply_match(s, node, match, current_node_pattern, node_to_subpattern)
for subpattern, arg in zip(args, node.args):
apply_match(subpattern, arg, match, current_node_pattern, node_to_subpattern)
matched_node_pattern.append(tuple(current_node_pattern))
else:
# the first pattern matches will take precedence
if node.name not in match_map:
matched_node_pattern.append(node)
# MatchAllNode here is actually MatchAllInputNode which should not
# be added to match_map
if pattern is not MatchAllNode:
node_to_subpattern[node] = pattern
root_node, pattern, handler = match
match_map[node.name] = (root_node, pattern, matched_node_pattern, handler, node_to_subpattern)
for node in reversed(graph.nodes):
if node.name not in match_map:
for pattern, fuse_handler_cls in pattern_to_fuse_handler_cls.items():
matched_node_pattern: List[Node] = []
if _is_match(modules, node, pattern):
apply_match(pattern, node, (node, pattern, fuse_handler_cls(node)), matched_node_pattern, node_to_subpattern)
break
return match_map