mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings. I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :) Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519 Approved by: https://github.com/ezyang
621 lines
26 KiB
Python
621 lines
26 KiB
Python
# Owner(s): ["oncall: mobile"]
|
|
|
|
import unittest
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.utils.bundled_inputs
|
|
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfNoXNNPACK
|
|
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
|
|
from torch.utils.mobile_optimizer import (LintCode,
|
|
generate_mobile_module_lints,
|
|
optimize_for_mobile,
|
|
MobileOptimizerType)
|
|
from torch.nn import functional as F
|
|
from torch.testing._internal.common_quantized import override_quantized_engine
|
|
|
|
try:
|
|
import torchvision
|
|
HAS_TORCHVISION = True
|
|
except ImportError:
|
|
HAS_TORCHVISION = False
|
|
|
|
FileCheck = torch._C.FileCheck
|
|
|
|
class TestOptimizer(TestCase):
|
|
|
|
@skipIfNoXNNPACK
|
|
def test_optimize_for_mobile(self):
|
|
batch_size = 2
|
|
input_channels_per_group = 6
|
|
height = 16
|
|
width = 16
|
|
output_channels_per_group = 6
|
|
groups = 4
|
|
kernel_h = kernel_w = 3
|
|
stride_h = stride_w = 1
|
|
pad_h = pad_w = 1
|
|
dilation = 1
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
conv_bias_shape = (output_channels)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
conv_bias = torch.rand(output_channels)
|
|
result = F.conv2d(input_data, conv_weight, conv_bias, strides, paddings, dilations, groups)
|
|
weight_output_dim = 24
|
|
linear_input_shape = result.shape[1]
|
|
linear_weight_shape = (weight_output_dim, linear_input_shape)
|
|
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv_weight = torch.nn.Parameter(torch.rand(conv_weight_shape))
|
|
self.conv_bias = torch.nn.Parameter(torch.rand(conv_bias_shape))
|
|
self.linear_weight = torch.nn.Parameter(torch.rand(linear_weight_shape))
|
|
self.linear_bias = torch.nn.Parameter(torch.rand(weight_output_dim))
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(x, self.conv_weight, self.conv_bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
o = F.relu(o)
|
|
x = o.permute([0, 2, 3, 1])
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
o = o + x
|
|
return F.relu(o)
|
|
|
|
@torch.jit.export
|
|
def foo(self, x):
|
|
o = F.conv2d(x, self.conv_weight, self.conv_bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
o = F.relu(o)
|
|
x = o.permute([0, 2, 3, 1])
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
o = o + x
|
|
return F.relu(o)
|
|
|
|
|
|
class BNTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(1, 20, 5, 1)
|
|
self.bn = torch.nn.BatchNorm2d(num_features=20)
|
|
self.bn.eps = 0.0023
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
data_shape = (batch_size, input_channels, height, width)
|
|
input_data = torch.normal(1, 20, size=data_shape)
|
|
|
|
scripted_model = torch.jit.script(MyTestModule())
|
|
scripted_model.eval()
|
|
initial_result = scripted_model(input_data)
|
|
initial_foo_result = scripted_model.foo(input_data)
|
|
|
|
optimized_scripted_model = optimize_for_mobile(scripted_model, preserved_methods=['foo'])
|
|
optimized_result = optimized_scripted_model(input_data)
|
|
optimized_foo_result = optimized_scripted_model.foo(input_data)
|
|
|
|
FileCheck().check_not("Tensor = aten::conv2d") \
|
|
.check_not("Tensor = prim::CallFunction") \
|
|
.check_not("prepacked::conv2d_clamp_prepack") \
|
|
.check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \
|
|
.check_not("prepacked::linear_clamp_prepack") \
|
|
.check_count("prepacked::linear_clamp_run", 1, exactly=True) \
|
|
.check_not("aten::add(") \
|
|
.check_not("aten::relu(") \
|
|
.check_count("aten::_add_relu(", 1, exactly=True) \
|
|
.run(optimized_scripted_model.graph)
|
|
torch.testing.assert_close(initial_result, optimized_result, rtol=1e-2, atol=1e-3)
|
|
|
|
FileCheck().check_not("Tensor = aten::conv2d") \
|
|
.check_not("Tensor = prim::CallFunction") \
|
|
.check_not("prepacked::conv2d_clamp_prepack") \
|
|
.check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \
|
|
.check_not("prepacked::linear_clamp_prepack") \
|
|
.check_count("prepacked::linear_clamp_run", 1, exactly=True) \
|
|
.check_not("aten::add(") \
|
|
.check_not("aten::relu(") \
|
|
.check_count("aten::_add_relu(", 1, exactly=True) \
|
|
.run(optimized_scripted_model.foo.graph)
|
|
torch.testing.assert_close(initial_foo_result, optimized_foo_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
optimization_blocklist_no_prepack = {MobileOptimizerType.INSERT_FOLD_PREPACK_OPS}
|
|
optimized_scripted_model_no_prepack = optimize_for_mobile(scripted_model, optimization_blocklist_no_prepack)
|
|
optimized_result_no_prepack = optimized_scripted_model_no_prepack(input_data)
|
|
|
|
FileCheck().check_count("Tensor = aten::conv2d", 1, exactly=True) \
|
|
.check_not("prepacked::linear_clamp_run") \
|
|
.check_not("prepacked::conv2d_clamp_run") \
|
|
.run(optimized_scripted_model_no_prepack.graph)
|
|
torch.testing.assert_close(initial_result, optimized_result_no_prepack, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
bn_test_module = BNTestModule()
|
|
bn_scripted_module = torch.jit.script(bn_test_module)
|
|
bn_scripted_module.eval()
|
|
|
|
self.assertEqual(len(torch.jit.export_opnames(bn_scripted_module)), 11)
|
|
FileCheck().check_count("prim::CallMethod[name=\"forward\"]", 2, exactly=True) \
|
|
.run(str(get_forward(bn_scripted_module._c).graph))
|
|
|
|
optimization_blocklist_no_prepack = {MobileOptimizerType.INSERT_FOLD_PREPACK_OPS}
|
|
bn_fold_scripted_module = optimize_for_mobile(bn_scripted_module, optimization_blocklist_no_prepack)
|
|
self.assertEqual(len(torch.jit.export_opnames(bn_fold_scripted_module)), 1)
|
|
bn_input = torch.rand(1, 1, 6, 6)
|
|
torch.testing.assert_close(bn_scripted_module(bn_input), bn_fold_scripted_module(bn_input), rtol=1e-2, atol=1e-3)
|
|
|
|
optimization_blocklist_no_fold_bn = {MobileOptimizerType.CONV_BN_FUSION}
|
|
no_bn_fold_scripted_module = optimize_for_mobile(bn_scripted_module, optimization_blocklist_no_fold_bn)
|
|
FileCheck().check_count("aten::batch_norm", 1, exactly=True) \
|
|
.run(str(get_forward_graph(no_bn_fold_scripted_module._c)))
|
|
bn_input = torch.rand(1, 1, 6, 6)
|
|
torch.testing.assert_close(bn_scripted_module(bn_input), no_bn_fold_scripted_module(bn_input), rtol=1e-2, atol=1e-3)
|
|
|
|
class MyMobileOptimizedTagTest(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear_weight = torch.nn.Parameter(torch.rand(linear_weight_shape))
|
|
self.linear_bias = torch.nn.Parameter(torch.rand(weight_output_dim))
|
|
|
|
def forward(self, x):
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
mobile_optimized_tag_module = MyMobileOptimizedTagTest()
|
|
m = torch.jit.script(mobile_optimized_tag_module)
|
|
m.eval()
|
|
opt_m = optimize_for_mobile(m)
|
|
tag = getattr(opt_m, "mobile_optimized", None)
|
|
self.assertTrue(tag)
|
|
|
|
class MyPreserveMethodsTest(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear_weight = torch.nn.Parameter(torch.rand(linear_weight_shape))
|
|
self.linear_bias = torch.nn.Parameter(torch.rand(weight_output_dim))
|
|
|
|
def forward(self, x):
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
@torch.jit.export
|
|
def preserveThis(self):
|
|
pass
|
|
|
|
preserve_method_module = MyPreserveMethodsTest()
|
|
m = torch.jit.script(preserve_method_module)
|
|
m.eval()
|
|
opt_m = optimize_for_mobile(m)
|
|
no_preserveThis = getattr(opt_m, "preserveThis", None)
|
|
self.assertEqual(no_preserveThis, None)
|
|
opt_m = optimize_for_mobile(m, preserved_methods=["preserveThis"])
|
|
preserveThis = getattr(opt_m, "preserveThis", None)
|
|
self.assertNotEqual(preserveThis, None)
|
|
|
|
class OptimizeNoForwardTest(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.l = nn.Linear(10, 100)
|
|
self.l2 = nn.Linear(100, 1)
|
|
self.d = nn.Dropout(p=0.2)
|
|
|
|
@torch.jit.export
|
|
def foo(self, x):
|
|
x = self.d(F.relu(self.l(x)))
|
|
x = self.l2(x)
|
|
x = x + torch.ones(1, 100)
|
|
return F.relu(x)
|
|
input_data = torch.ones(1, 10)
|
|
m = torch.jit.script(OptimizeNoForwardTest())
|
|
m.eval()
|
|
initial_result = m.foo(input_data)
|
|
|
|
optimized_scripted_model = optimize_for_mobile(m, preserved_methods=['foo'])
|
|
optimized_result = optimized_scripted_model.foo(input_data)
|
|
|
|
FileCheck().check_not("dropout.__") \
|
|
.check_count("aten::_add_relu(", 1, exactly=True) \
|
|
.run(optimized_scripted_model.foo.graph)
|
|
torch.testing.assert_close(initial_result, optimized_result, rtol=1e-2, atol=1e-3)
|
|
|
|
class BNTestNoForwardModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(1, 20, 5, 1)
|
|
self.bn = torch.nn.BatchNorm2d(num_features=20)
|
|
self.bn.eps = 0.0023
|
|
|
|
@torch.jit.export
|
|
def foo(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
bn_test_no_forward_module = BNTestNoForwardModule()
|
|
bn_no_forward_scripted_module = torch.jit.script(bn_test_no_forward_module)
|
|
bn_no_forward_scripted_module.eval()
|
|
|
|
self.assertEqual(len(torch.jit.export_opnames(bn_no_forward_scripted_module)), 11)
|
|
FileCheck().check_count("prim::CallMethod[name=\"forward\"]", 2, exactly=True) \
|
|
.run(bn_no_forward_scripted_module.foo.graph)
|
|
|
|
bn_fold_no_forward_scripted_module = optimize_for_mobile(bn_no_forward_scripted_module, preserved_methods=['foo'])
|
|
self.assertEqual(len(torch.jit.export_opnames(bn_fold_no_forward_scripted_module)), 1)
|
|
bn_input = torch.rand(1, 1, 6, 6)
|
|
torch.testing.assert_close(
|
|
bn_no_forward_scripted_module.foo(bn_input),
|
|
bn_fold_no_forward_scripted_module.foo(bn_input),
|
|
rtol=1e-2,
|
|
atol=1e-3)
|
|
|
|
@skipIfNoXNNPACK
|
|
def test_quantized_conv_no_asan_failures(self):
|
|
# There were ASAN failures when fold_conv_bn was run on
|
|
# already quantized conv modules. Verifying that this does
|
|
# not happen again.
|
|
|
|
if 'qnnpack' not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
class Child(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv2 = nn.Conv2d(1, 1, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv2(x)
|
|
return x
|
|
|
|
class Parent(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.quant = torch.ao.quantization.QuantStub()
|
|
self.conv1 = nn.Conv2d(1, 1, 1)
|
|
self.child = Child()
|
|
self.dequant = torch.ao.quantization.DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv1(x)
|
|
x = self.child(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
with override_quantized_engine('qnnpack'):
|
|
model = Parent()
|
|
model.qconfig = torch.ao.quantization.get_default_qconfig('qnnpack')
|
|
torch.ao.quantization.prepare(model, inplace=True)
|
|
model(torch.randn(4, 1, 4, 4))
|
|
torch.ao.quantization.convert(model, inplace=True)
|
|
model = torch.jit.script(model)
|
|
# this line should not have ASAN failures
|
|
model_optim = optimize_for_mobile(model)
|
|
|
|
def test_generate_mobile_module_lints(self):
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fc = torch.nn.Linear(4, 4)
|
|
self.dropout = torch.nn.Dropout(p=0.5)
|
|
|
|
def forward(self, inputs):
|
|
out = self.fc(inputs)
|
|
out = self.dropout(out)
|
|
return out
|
|
|
|
class MyBNModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.bn = torch.nn.BatchNorm2d(4, affine=True)
|
|
|
|
def forward(self, inputs):
|
|
bn = self.bn(inputs)
|
|
return bn
|
|
|
|
class MyBundledInputModule(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return inputs
|
|
|
|
def get_lint_count_by_type(lint_type, module_lint_List):
|
|
return len([lint_dict for lint_dict in module_lint_List if lint_dict['name'] == lint_type.name])
|
|
|
|
test_module = torch.jit.script(MyTestModule())
|
|
test_module_lint_list = generate_mobile_module_lints(test_module)
|
|
self.assertEqual(len(test_module_lint_list), 4)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.BUNDLED_INPUT, test_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.DROPOUT, test_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.REQUIRES_GRAD, test_module_lint_list), 2)
|
|
|
|
bn_module = torch.jit.script(MyBNModule())
|
|
bn_module_lint_list = generate_mobile_module_lints(bn_module)
|
|
self.assertEqual(len(bn_module_lint_list), 4)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.BUNDLED_INPUT, bn_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.BATCHNORM, bn_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.REQUIRES_GRAD, bn_module_lint_list), 2)
|
|
|
|
bi_module = torch.jit.script(MyBundledInputModule())
|
|
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
|
|
bi_module, [(torch.tensor([1]),)], [])
|
|
bi_module_lint_list = generate_mobile_module_lints(bi_module)
|
|
self.assertEqual(len(bi_module_lint_list), 0)
|
|
|
|
@skipIfNoXNNPACK
|
|
def test_preserve_bundled_inputs_methods(self):
|
|
class MyBundledInputModule(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return inputs
|
|
|
|
class MyIncompleteBundledInputModule(torch.nn.Module):
|
|
def forward(self, inputs):
|
|
return inputs
|
|
|
|
@torch.jit.export
|
|
def get_all_bundled_inputs(self):
|
|
pass
|
|
|
|
bi_module = torch.jit.script(MyBundledInputModule())
|
|
module_optim_bi_not_preserved = optimize_for_mobile(bi_module)
|
|
|
|
# Expected to be False since no bundled inputs methods were added
|
|
self.assertFalse(
|
|
hasattr(module_optim_bi_not_preserved, 'get_all_bundled_inputs') or
|
|
hasattr(module_optim_bi_not_preserved, 'get_num_bundled_inputs')
|
|
)
|
|
|
|
# Add bundled inputs methods to the module
|
|
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
|
|
bi_module, [(torch.tensor([1]),)], [])
|
|
# Now they should be preserved
|
|
module_optim_bi_preserved = optimize_for_mobile(bi_module)
|
|
|
|
# All of the bundled inputs methods were preserved
|
|
self.assertTrue(
|
|
hasattr(module_optim_bi_preserved, 'get_all_bundled_inputs') and
|
|
hasattr(module_optim_bi_preserved, 'get_num_bundled_inputs')
|
|
)
|
|
|
|
bundled_input = module_optim_bi_preserved.get_all_bundled_inputs()[0]
|
|
module_optim_bi_preserved(*bundled_input)
|
|
|
|
# If not all 3 bundled inputs methods are present in the module,
|
|
# we will not try to preserve them unless specified by the user.
|
|
incomplete_bi_module = torch.jit.script(MyIncompleteBundledInputModule())
|
|
incomplete_bi_module_optim = optimize_for_mobile(incomplete_bi_module)
|
|
self.assertFalse(hasattr(incomplete_bi_module_optim, 'get_all_bundled_inputs'))
|
|
|
|
# Specifically preserve get_all_bundled_inputs even if it's the only one
|
|
# bundled inputs method available.
|
|
incomplete_bi_module_optim = optimize_for_mobile(incomplete_bi_module, preserved_methods=['get_all_bundled_inputs'])
|
|
self.assertTrue(hasattr(incomplete_bi_module_optim, 'get_all_bundled_inputs'))
|
|
|
|
@skipIfNoXNNPACK
|
|
def test_hoist_conv_packed_params(self):
|
|
|
|
if 'qnnpack' not in torch.backends.quantized.supported_engines:
|
|
return
|
|
|
|
class Standalone(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.quant = torch.ao.quantization.QuantStub()
|
|
self.conv1 = nn.Conv2d(1, 1, 1)
|
|
self.conv2 = nn.Conv2d(1, 1, 1)
|
|
self.relu = nn.ReLU()
|
|
self.dequant = torch.ao.quantization.DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def fuse_model(self):
|
|
torch.ao.quantization.fuse_modules(self, [['conv2', 'relu']], inplace=True)
|
|
pass
|
|
|
|
class Child(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(1, 1, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
return x
|
|
|
|
class Parent(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.quant = torch.ao.quantization.QuantStub()
|
|
self.conv1 = nn.Conv2d(1, 1, 1)
|
|
self.child = Child()
|
|
# TODO: test nn.Sequential after #42039 is fixed
|
|
self.dequant = torch.ao.quantization.DeQuantStub()
|
|
|
|
def forward(self, x):
|
|
x = self.quant(x)
|
|
x = self.conv1(x)
|
|
x = self.child(x)
|
|
x = self.dequant(x)
|
|
return x
|
|
|
|
def fuse_model(self):
|
|
pass
|
|
|
|
with override_quantized_engine('qnnpack'):
|
|
def _quant_script_and_optimize(model):
|
|
model.qconfig = torch.ao.quantization.get_default_qconfig('qnnpack')
|
|
model.fuse_model()
|
|
torch.ao.quantization.prepare(model, inplace=True)
|
|
model(torch.randn(4, 1, 4, 4))
|
|
torch.ao.quantization.convert(model, inplace=True)
|
|
model = torch.jit.script(model)
|
|
model_optim = optimize_for_mobile(model)
|
|
return model, model_optim
|
|
|
|
# basic case
|
|
|
|
m, m_optim = _quant_script_and_optimize(Standalone())
|
|
FileCheck().check_not("Conv2d = prim::GetAttr[name=\"conv1\"]") \
|
|
.check_count("__torch__.torch.classes.quantized.Conv2dPackedParamsBase = prim::Constant", 2, exactly=True) \
|
|
.run(m_optim.graph)
|
|
self.assertFalse(hasattr(m_optim, "conv1"))
|
|
self.assertFalse(hasattr(m_optim, "conv2"))
|
|
|
|
data = torch.randn(4, 1, 4, 4)
|
|
m_res = m(data)
|
|
m_optim_res = m_optim(data)
|
|
torch.testing.assert_close(m_res, m_optim_res, rtol=1e-2, atol=1e-3)
|
|
|
|
# generic case
|
|
|
|
m, m_optim = _quant_script_and_optimize(Parent())
|
|
FileCheck().check_not("Conv2d = prim::GetAttr[name=\"conv1\"]") \
|
|
.check_count("__torch__.torch.classes.quantized.Conv2dPackedParamsBase = prim::Constant", 2, exactly=True) \
|
|
.run(m_optim.graph)
|
|
self.assertFalse(hasattr(m_optim, "conv1"))
|
|
self.assertFalse(hasattr(m_optim, "child"))
|
|
|
|
data = torch.randn(4, 1, 4, 4)
|
|
m_res = m(data)
|
|
m_optim_res = m_optim(data)
|
|
torch.testing.assert_close(m_res, m_optim_res, rtol=1e-2, atol=1e-3)
|
|
|
|
@skipIfNoXNNPACK
|
|
@unittest.skipUnless(HAS_TORCHVISION, "Needs torchvision")
|
|
def test_mobilenet_optimize_for_mobile(self):
|
|
m = torchvision.models.mobilenet_v3_small()
|
|
m = torch.jit.script(m)
|
|
m = optimize_for_mobile(m)
|
|
|
|
# run forward 3 times until segfault, see https://github.com/pytorch/pytorch/issues/52463
|
|
x = torch.zeros(1, 3, 56, 56)
|
|
self.assertEqual(m(x).numel(), 1000)
|
|
self.assertEqual(m(x).numel(), 1000)
|
|
self.assertEqual(m(x).numel(), 1000)
|
|
|
|
def test_clone_module_with_class(self):
|
|
class MyInnerTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.pqr = torch.Tensor([10., 20., 30.])
|
|
|
|
def forward(self, inputs):
|
|
return inputs
|
|
|
|
@torch.jit.export
|
|
def dummy_method_not_cloned(self):
|
|
return 20
|
|
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.abc = 23
|
|
self.pqr = torch.Tensor([1., 2., 3.])
|
|
self.inner = MyInnerTestModule()
|
|
|
|
def forward(self, inputs):
|
|
x = self.dummy_method_cloned()
|
|
# The call to self.inner.dummy_method_not_cloned should not raise an error
|
|
y = self.inner.dummy_method_not_cloned()
|
|
# The call to self.inner.pqr should not raise an error
|
|
z = self.inner.pqr
|
|
return (inputs, x, y, z)
|
|
|
|
@torch.jit.export
|
|
def dummy_method_not_cloned2(self):
|
|
# The call to self.inner.dummy_method_not_cloned should not raise an error
|
|
y = self.inner.dummy_method_not_cloned()
|
|
# The call to self.inner.pqr should not raise an error
|
|
z = self.inner.pqr
|
|
return self.pqr, self.dummy_method_not_cloned(), y, z
|
|
|
|
@torch.jit.export
|
|
def dummy_method_not_cloned(self):
|
|
return None
|
|
|
|
@torch.jit.export
|
|
def dummy_method_cloned(self):
|
|
return None
|
|
|
|
@torch.jit.export
|
|
def dummy_method_ref_attr_pqr(self):
|
|
return self.pqr, self.inner.pqr
|
|
|
|
m = torch.jit.script(MyTestModule())
|
|
|
|
# Check that the methods exist on the original model.
|
|
self.assertEqual(hasattr(m, "dummy_method_not_cloned"), True)
|
|
self.assertEqual(hasattr(m, "dummy_method_cloned"), True)
|
|
self.assertEqual(hasattr(m, "dummy_method_not_cloned2"), True)
|
|
self.assertEqual(hasattr(m, "pqr"), True)
|
|
|
|
# Case-1: Successfully clone, ignoring 2 methods, keeping all attributes.
|
|
cloned = torch._C._hack_do_not_use_clone_module_with_class(
|
|
m._c,
|
|
["dummy_method_not_cloned", "dummy_method_not_cloned2"], # ignored_methods
|
|
[], # ignored_attributes
|
|
)
|
|
|
|
# Check that the ignored methods don't exist on the cloned model.
|
|
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned"), False)
|
|
self.assertEqual(hasattr(cloned, "dummy_method_cloned"), True)
|
|
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned2"), False)
|
|
self.assertEqual(hasattr(cloned, "pqr"), True)
|
|
|
|
# Check that the cloned class has a classname that starts with __torch__.
|
|
self.assertTrue(
|
|
cloned.qualified_name.startswith('__torch__.'),
|
|
("Expected the cloned module's name to start with the string "
|
|
f"'__torch__.', but got: {cloned.qualified_name}"),
|
|
)
|
|
|
|
|
|
# Case-2: Successfully clone the module, ignoring the attribute pqr, and the method that references it.
|
|
cloned = torch._C._hack_do_not_use_clone_module_with_class(
|
|
m._c,
|
|
["dummy_method_not_cloned", "dummy_method_not_cloned2", "dummy_method_ref_attr_pqr"],
|
|
["pqr"],
|
|
)
|
|
|
|
# Check that the ignored methods don't exist on the cloned model.
|
|
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned"), False)
|
|
self.assertEqual(hasattr(cloned, "dummy_method_cloned"), True)
|
|
self.assertEqual(hasattr(cloned, "dummy_method_not_cloned2"), False)
|
|
self.assertEqual(hasattr(cloned, "dummy_method_ref_attr_pqr"), False)
|
|
self.assertEqual(hasattr(cloned, "pqr"), False)
|
|
|
|
|
|
# Case-3: The statement below will throw since dummy_method_cloned2 is preserved,
|
|
# and references dummy_method_not_cloned, which is not cloned.
|
|
with self.assertRaises(RuntimeError):
|
|
cloned = torch._C._hack_do_not_use_clone_module_with_class(m._c, ["dummy_method_not_cloned"], [])
|
|
|
|
# Case-4: The statement below will throw since dummy_method_ref_attr_pqr
|
|
# is preserved, and references "pqr", which is not cloned.
|
|
with self.assertRaises(RuntimeError):
|
|
cloned = torch._C._hack_do_not_use_clone_module_with_class(
|
|
m._c,
|
|
["dummy_method_not_cloned", "dummy_method_not_cloned2"],
|
|
["pqr"],
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|